
JADI - Marília - v.1 - 2015

A Survey on Test Oracles

Paulo A. Nardi and Eduardo F. Damasceno
DACOM

Universidade Tecnológica Federal do Paraná
Cornélio Procópio, Brazil

{paulonardi,damasceno}@utfpr.edu.br

Abstract—Oracles play a key role in software testing since they
state the correctness of the software under test. Unfortunately,
many testers tend to judge their own executions, but human
oracles are error-prone, slow, and very expensive. In contrast,
automated oracles are usually faster, cheaper, and much more
reliable: many proposals have addressed the problem, but no
unique solution has emerged so far. The variety of these solutions
motivated the survey of the state of the art on test oracles
presented in this paper. Besides introducing the general concepts,
we propose a classification based on the origin of the information
used by the oracle. For each oracle type, the survey discusses it,
proposes some examples, and highlights its limitations.
Moreover, it compares the different types and provides a final
holistic assessment. The goal is to provide software testing
professionals and researchers with a taxonomy, a critical
overview, and a fair assessment of the state of the art in the
domain.

Index Terms—Test Oracle, Software Testing, Test Automation.

I. INTRODUCTION
Test oracles occupy a prominent role in the testing process:

they determine whether the software under test behaviors
correctly [1]. Oftentimes, testers themselves assess the
correctness, but they are usually slow, error-prone, and very
expensive. In contrast, automated means are cheap and can
give better, faster and more reliable results.

Sharamiri [2] states that a “complete” test oracle is in
charge of generating the expected outputs, running the test
cases, comparing expected and actual outputs, and deciding
whether the execution is correct. While running the test cases is
simple, the other three activities can be carried out in a variety
of ways and effectiveness. The identification of expected
results is often not trivial, and many test data may not produce
any relevant output. To name drawbacks on the comparison
activity between expected and actual results: programs may
calculate outputs that are unknown (for example, the
identification of as many decimal numbers as possible of π);
the expected output may be too large or complex to be
compared in reasonable time by manual means and too difficult
to be specified and automated.

The difficulty in deciding whether a result is acceptable or
not is known as the Oracle Problem [3]. Weyuker [4] was the
first to state that programs without pre-computed results are
non-testable. Nonetheless, modern test oracles aim to identify
expected results, assess obtained outcomes, and decide whether
the execution is correct for both testable and non-testable
software. Despite they are not “ideal” oracles in the sense they

cannot guarantee the identification of all possible errors,
different approaches can improve the test activity if compared
with manual means.

The many facets of the oracle identification problem
motivated us to conduct a systematic review on the approaches
proposed so far to identify the different types of oracles along
with their limitations. We classified the oracles based on the
origin of the information used to decide whether the program
under test is correct or not: (i) specification-based oracles; (ii)
metamorphic relation based oracles; (iii) machine learning
based oracles; and, (iv) N-version oracles.

The rest of this paper is organized as follows. Section II
introduces the basic concepts about test oracles. Section III
presents a summary of how the systematic review was
executed. Section IV presents the actual overview where we
classify and describe the approaches found in literature.
Section V provides a discussion on the oracle classes. Section
VI concludes the paper.

II. GENERAL CONCEPTS
This section presents basic concepts to the understanding of

this paper. Given that test oracles are classified in many ways,
it is also presented common types of oracles found in the
literature.

There are programs which produce large number of
outputs, and thus checking their correctness becomes time
consuming and error prone. This is why we need methods and
techniques to produce automated oracles efficiently.

An ideal automated oracle should be able to mimic exactly
the behavior of the application under test in a completely
reliable way: it should accept all possible inputs and produce
its respective results, correctly [5]. A practical test oracle,
however, does not need to target all inputs and outputs, but it
could concentrate on the pairs used on the tests.

A test oracle should also have knowledge of the expected
output and compare it with the actual outcome (also named
here as obtained output). This means that an oracle should
comprise both information and procedures [6]. Oracle
information represents the expected output, which can be
defined through specifications, acquired by previously stored
results, from execution of code or models developed in
parallel, metamorphic relations, or machine learning.
Information can provide concrete results (values), that is, the
exact value of a result; or constraints that must be respected,
otherwise a result would be considered wrong or unacceptable.
An oracle procedure compares the oracle information with the

A Survey on Test Oracles

Paulo A. Nardi and Eduardo F. Damasceno
DACOM

Universidade Tecnológica Federal do Paraná
Cornélio Procópio, Brazil

{paulonardi,damasceno}@utfpr.edu.br

Abstract—Oracles play a key role in software testing since they
state the correctness of the software under test. Unfortunately,
many testers tend to judge their own executions, but human
oracles are error-prone, slow, and very expensive. In contrast,
automated oracles are usually faster, cheaper, and much more
reliable: many proposals have addressed the problem, but no
unique solution has emerged so far. The variety of these solutions
motivated the survey of the state of the art on test oracles
presented in this paper. Besides introducing the general concepts,
we propose a classification based on the origin of the information
used by the oracle. For each oracle type, the survey discusses it,
proposes some examples, and highlights its limitations.
Moreover, it compares the different types and provides a final
holistic assessment. The goal is to provide software testing
professionals and researchers with a taxonomy, a critical
overview, and a fair assessment of the state of the art in the
domain.

Index Terms—Test Oracle, Software Testing, Test Automation.

I. INTRODUCTION
Test oracles occupy a prominent role in the testing process:

they determine whether the software under test behaviors
correctly [1]. Oftentimes, testers themselves assess the
correctness, but they are usually slow, error-prone, and very
expensive. In contrast, automated means are cheap and can
give better, faster and more reliable results.

Sharamiri [2] states that a “complete” test oracle is in
charge of generating the expected outputs, running the test
cases, comparing expected and actual outputs, and deciding
whether the execution is correct. While running the test cases is
simple, the other three activities can be carried out in a variety
of ways and effectiveness. The identification of expected
results is often not trivial, and many test data may not produce
any relevant output. To name drawbacks on the comparison
activity between expected and actual results: programs may
calculate outputs that are unknown (for example, the
identification of as many decimal numbers as possible of π);
the expected output may be too large or complex to be
compared in reasonable time by manual means and too difficult
to be specified and automated.

The difficulty in deciding whether a result is acceptable or
not is known as the Oracle Problem [3]. Weyuker [4] was the
first to state that programs without pre-computed results are
non-testable. Nonetheless, modern test oracles aim to identify
expected results, assess obtained outcomes, and decide whether
the execution is correct for both testable and non-testable
software. Despite they are not “ideal” oracles in the sense they

cannot guarantee the identification of all possible errors,
different approaches can improve the test activity if compared
with manual means.

The many facets of the oracle identification problem
motivated us to conduct a systematic review on the approaches
proposed so far to identify the different types of oracles along
with their limitations. We classified the oracles based on the
origin of the information used to decide whether the program
under test is correct or not: (i) specification-based oracles; (ii)
metamorphic relation based oracles; (iii) machine learning
based oracles; and, (iv) N-version oracles.

The rest of this paper is organized as follows. Section II
introduces the basic concepts about test oracles. Section III
presents a summary of how the systematic review was
executed. Section IV presents the actual overview where we
classify and describe the approaches found in literature.
Section V provides a discussion on the oracle classes. Section
VI concludes the paper.

II. GENERAL CONCEPTS
This section presents basic concepts to the understanding of

this paper. Given that test oracles are classified in many ways,
it is also presented common types of oracles found in the
literature.

There are programs which produce large number of
outputs, and thus checking their correctness becomes time
consuming and error prone. This is why we need methods and
techniques to produce automated oracles efficiently.

An ideal automated oracle should be able to mimic exactly
the behavior of the application under test in a completely
reliable way: it should accept all possible inputs and produce
its respective results, correctly [5]. A practical test oracle,
however, does not need to target all inputs and outputs, but it
could concentrate on the pairs used on the tests.

A test oracle should also have knowledge of the expected
output and compare it with the actual outcome (also named
here as obtained output). This means that an oracle should
comprise both information and procedures [6]. Oracle
information represents the expected output, which can be
defined through specifications, acquired by previously stored
results, from execution of code or models developed in
parallel, metamorphic relations, or machine learning.
Information can provide concrete results (values), that is, the
exact value of a result; or constraints that must be respected,
otherwise a result would be considered wrong or unacceptable.
An oracle procedure compares the oracle information with the

Paulo A. Nardi and Eduardo F. Damasceno, DACOM, Universidade Tecnológica Federal
do Paraná - UTFPR

A Survey on Test Oracles

Paulo A. Nardi and Eduardo F. Damasceno
DACOM

Universidade Tecnológica Federal do Paraná
Cornélio Procópio, Brazil

{paulonardi,damasceno}@utfpr.edu.br

Abstract—Oracles play a key role in software testing since they
state the correctness of the software under test. Unfortunately,
many testers tend to judge their own executions, but human
oracles are error-prone, slow, and very expensive. In contrast,
automated oracles are usually faster, cheaper, and much more
reliable: many proposals have addressed the problem, but no
unique solution has emerged so far. The variety of these solutions
motivated the survey of the state of the art on test oracles
presented in this paper. Besides introducing the general concepts,
we propose a classification based on the origin of the information
used by the oracle. For each oracle type, the survey discusses it,
proposes some examples, and highlights its limitations.
Moreover, it compares the different types and provides a final
holistic assessment. The goal is to provide software testing
professionals and researchers with a taxonomy, a critical
overview, and a fair assessment of the state of the art in the
domain.

Index Terms—Test Oracle, Software Testing, Test Automation.

I. INTRODUCTION
Test oracles occupy a prominent role in the testing process:

they determine whether the software under test behaviors
correctly [1]. Oftentimes, testers themselves assess the
correctness, but they are usually slow, error-prone, and very
expensive. In contrast, automated means are cheap and can
give better, faster and more reliable results.

Sharamiri [2] states that a “complete” test oracle is in
charge of generating the expected outputs, running the test
cases, comparing expected and actual outputs, and deciding
whether the execution is correct. While running the test cases is
simple, the other three activities can be carried out in a variety
of ways and effectiveness. The identification of expected
results is often not trivial, and many test data may not produce
any relevant output. To name drawbacks on the comparison
activity between expected and actual results: programs may
calculate outputs that are unknown (for example, the
identification of as many decimal numbers as possible of π);
the expected output may be too large or complex to be
compared in reasonable time by manual means and too difficult
to be specified and automated.

The difficulty in deciding whether a result is acceptable or
not is known as the Oracle Problem [3]. Weyuker [4] was the
first to state that programs without pre-computed results are
non-testable. Nonetheless, modern test oracles aim to identify
expected results, assess obtained outcomes, and decide whether
the execution is correct for both testable and non-testable
software. Despite they are not “ideal” oracles in the sense they

cannot guarantee the identification of all possible errors,
different approaches can improve the test activity if compared
with manual means.

The many facets of the oracle identification problem
motivated us to conduct a systematic review on the approaches
proposed so far to identify the different types of oracles along
with their limitations. We classified the oracles based on the
origin of the information used to decide whether the program
under test is correct or not: (i) specification-based oracles; (ii)
metamorphic relation based oracles; (iii) machine learning
based oracles; and, (iv) N-version oracles.

The rest of this paper is organized as follows. Section II
introduces the basic concepts about test oracles. Section III
presents a summary of how the systematic review was
executed. Section IV presents the actual overview where we
classify and describe the approaches found in literature.
Section V provides a discussion on the oracle classes. Section
VI concludes the paper.

II. GENERAL CONCEPTS
This section presents basic concepts to the understanding of

this paper. Given that test oracles are classified in many ways,
it is also presented common types of oracles found in the
literature.

There are programs which produce large number of
outputs, and thus checking their correctness becomes time
consuming and error prone. This is why we need methods and
techniques to produce automated oracles efficiently.

An ideal automated oracle should be able to mimic exactly
the behavior of the application under test in a completely
reliable way: it should accept all possible inputs and produce
its respective results, correctly [5]. A practical test oracle,
however, does not need to target all inputs and outputs, but it
could concentrate on the pairs used on the tests.

A test oracle should also have knowledge of the expected
output and compare it with the actual outcome (also named
here as obtained output). This means that an oracle should
comprise both information and procedures [6]. Oracle
information represents the expected output, which can be
defined through specifications, acquired by previously stored
results, from execution of code or models developed in
parallel, metamorphic relations, or machine learning.
Information can provide concrete results (values), that is, the
exact value of a result; or constraints that must be respected,
otherwise a result would be considered wrong or unacceptable.
An oracle procedure compares the oracle information with the

50

JADI - Marília - v.1 - 2015

obtained output: this comparison can be performed either at
runtime or off line, that is, after the execution [7].

Different oracle information implies different oracle
procedures and may also influence the effectiveness of the
oracle. Specification-based oracles use system specifications to
compare whether a program is correct; metamorphic relation
based oracles apply known relations between the inputs and
their respective outputs, which are not necessarily part of the
system specification; oracles based on Machine Learning
attempt to mimic the program's behavior - as a function
approximator with previous test cases; N-version oracles use
different implementations of the software under test as oracle
and, in the presence of divergent results, the expected results is
the one with the highest number of occurrences.

Roughly, we can also classify the different proposals in two
big families: pseudo-oracles and partial oracles.

Pseudo-oracles are programs (executable models or code)
written in parallel with the code under test [8]. The goal is to
run the oracle and the software under test with the same input
data and compare the obtained outputs. The program passes the
test when results are the same on both, or if they are within an
acceptable margin of accuracy. Besides the burden of a double
development, there is no guarantee that the oracle is correct
and does not suffer the same problems of the program under
test.

Partial oracles are able to identify if a result is incorrect,
even without knowledge of the correct output [4]. The
verification is based on specifications, written as constraints
such as contracts (pre and post-conditions) and invariants [9].
Pre-conditions, post-conditions and invariants are expressions
that must be satisfied, respectively, before, during and after
executing the program under test. For example, a partial oracle
for a program that calculates the sine function can be based on
the following post-condition: the result should be within the
interval [-1:1]. Any result outside this range is reported as an
error.

Oracles can be also classified as active or passive. An
active oracle mimics the behavior of a software under test [10],
e.g., neural networks or executable models. Passive oracles
check the behavior of a component, but they do not reproduce
its behavior [11]: e.g., specification-based or metamorphic
relation based oracles.

III. SYSTEMATIC REVIEW
We conducted a systematic review on different approaches,

proposals, and solutions available for test oracle generation and
use. It aims to classifying the types of automated test oracles,
their limitations and provide guidelines to researchers and
testers (a list of support tools were listed by Nardi [12]). An
update on the systematic review was provided for further work
[13]. We searched five digital libraries: IEEE, ACM-Digital
Library, Spriger, Scirus and Scopus. The selected papers had at
least one of the following characteristics: describing how a test
oracle can be generated automatically; identifying a test oracle
and its definition or application; identifying tools that support
oracles; addressing the limitations of oracle utilization.

We obtained 493 papers, but some were copies. Thus, we
eliminated duplicates, results that had no significant keywords
in the abstract or title, unavailable papers and those not written
in English. After the pre-selection, we read all papers,
discarded the ones which not follow the search criteria, and
kept 304 papers: 217 papers focus on specification-based
oracles, 36 mention oracles based on metamorphic relations, 17
papers mention n-version or similar oracle techniques, and 20
papers focus on machine learning based oracles.

Fig. 1. Publications by year

Figure 1 presents the number of publications by year. We

observed a heightened interest on test oracles in the last 10
years, notably after 2001.

IV. A CLASSIFICATION BY ORACLE INFORMATION
As previously described, different oracle information

implies different oracle procedures and may also influence the
effectiveness of the oracle. This section describes the identified
categories.

A. Specification-based oracles
The formal specification of a system provides a source of

information about the correct behavior of its implementation
and thus it is a valuable source for test oracles [14]. There is a
wide range of different specification approaches and
languages: for example, models, assertions, extrinsic interface
contracts, and pure specification languages; Baresi and Young
[15] have already surveyed some significant proposals. These
oracles have also been applied on “real-world” applications for
example by Volvo [16], the U.S. Department of Defense [17],
and Microsoft [18].

If a specification is executable - e.g., Simulink models or
state machines-, the tester can use it as oracle and compare the
outputs obtained from the software with those produced by the
specification. For example, Andrews [19] and Tu [20] use a
specification language called LFAL (Log File Analysis
Language) to describe state machines. A state machine
description file (SMD) represents the specification of the
software under test. A parser uses the SMD to generate the
analyzer. The execution of the software under test creates a log

obtained output: this comparison can be performed either at
runtime or off line, that is, after the execution [7].

Different oracle information implies different oracle
procedures and may also influence the effectiveness of the
oracle. Specification-based oracles use system specifications to
compare whether a program is correct; metamorphic relation
based oracles apply known relations between the inputs and
their respective outputs, which are not necessarily part of the
system specification; oracles based on Machine Learning
attempt to mimic the program's behavior - as a function
approximator with previous test cases; N-version oracles use
different implementations of the software under test as oracle
and, in the presence of divergent results, the expected results is
the one with the highest number of occurrences.

Roughly, we can also classify the different proposals in two
big families: pseudo-oracles and partial oracles.

Pseudo-oracles are programs (executable models or code)
written in parallel with the code under test [8]. The goal is to
run the oracle and the software under test with the same input
data and compare the obtained outputs. The program passes the
test when results are the same on both, or if they are within an
acceptable margin of accuracy. Besides the burden of a double
development, there is no guarantee that the oracle is correct
and does not suffer the same problems of the program under
test.

Partial oracles are able to identify if a result is incorrect,
even without knowledge of the correct output [4]. The
verification is based on specifications, written as constraints
such as contracts (pre and post-conditions) and invariants [9].
Pre-conditions, post-conditions and invariants are expressions
that must be satisfied, respectively, before, during and after
executing the program under test. For example, a partial oracle
for a program that calculates the sine function can be based on
the following post-condition: the result should be within the
interval [-1:1]. Any result outside this range is reported as an
error.

Oracles can be also classified as active or passive. An
active oracle mimics the behavior of a software under test [10],
e.g., neural networks or executable models. Passive oracles
check the behavior of a component, but they do not reproduce
its behavior [11]: e.g., specification-based or metamorphic
relation based oracles.

III. SYSTEMATIC REVIEW
We conducted a systematic review on different approaches,

proposals, and solutions available for test oracle generation and
use. It aims to classifying the types of automated test oracles,
their limitations and provide guidelines to researchers and
testers (a list of support tools were listed by Nardi [12]). An
update on the systematic review was provided for further work
[13]. We searched five digital libraries: IEEE, ACM-Digital
Library, Spriger, Scirus and Scopus. The selected papers had at
least one of the following characteristics: describing how a test
oracle can be generated automatically; identifying a test oracle
and its definition or application; identifying tools that support
oracles; addressing the limitations of oracle utilization.

We obtained 493 papers, but some were copies. Thus, we
eliminated duplicates, results that had no significant keywords
in the abstract or title, unavailable papers and those not written
in English. After the pre-selection, we read all papers,
discarded the ones which not follow the search criteria, and
kept 304 papers: 217 papers focus on specification-based
oracles, 36 mention oracles based on metamorphic relations, 17
papers mention n-version or similar oracle techniques, and 20
papers focus on machine learning based oracles.

Fig. 1. Publications by year

Figure 1 presents the number of publications by year. We

observed a heightened interest on test oracles in the last 10
years, notably after 2001.

IV. A CLASSIFICATION BY ORACLE INFORMATION
As previously described, different oracle information

implies different oracle procedures and may also influence the
effectiveness of the oracle. This section describes the identified
categories.

A. Specification-based oracles
The formal specification of a system provides a source of

information about the correct behavior of its implementation
and thus it is a valuable source for test oracles [14]. There is a
wide range of different specification approaches and
languages: for example, models, assertions, extrinsic interface
contracts, and pure specification languages; Baresi and Young
[15] have already surveyed some significant proposals. These
oracles have also been applied on “real-world” applications for
example by Volvo [16], the U.S. Department of Defense [17],
and Microsoft [18].

If a specification is executable - e.g., Simulink models or
state machines-, the tester can use it as oracle and compare the
outputs obtained from the software with those produced by the
specification. For example, Andrews [19] and Tu [20] use a
specification language called LFAL (Log File Analysis
Language) to describe state machines. A state machine
description file (SMD) represents the specification of the
software under test. A parser uses the SMD to generate the
analyzer. The execution of the software under test creates a log

51

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

of events: the analyzer highlights a failure every time there is a
mismatch with what is expected by the state machine.

Some tools, as Simulink, can generate code automatically
from a model, which removes the need for manual coding. A
convenient feature of such tool is that a model can be executed
and its behavior can be analyzed prior to the code generation.
The complexity of such model, however, imposes their
verification: oftentimes one uses higher level specifications as
a Simulink model, and the same issue remains: how can one
compare the outputs produced by a model or by the code with
its specification? A possible solution is the use of partial
oracles, that is, constraints are used to analyze whether an
output generated by the model execution is acceptable. This
solution may be seen as a simplified way to check the model
by focusing on its critical aspects. These constraints should be
described formally to eliminate any ambiguity.

Examples of specification languages that are used to
describe such constraints (or rules) are: Z, Object Z, OCL,
Eiffel, VDM, JML, state machines, SDL and MITL.

The rest of this section discusses the trade-off between
using parts or complete specifications as oracle information,
the different approaches for comparing the outputs produced
by the implementation and the oracle, and some examples of
oracles in particular domains.

System and oracle specifications: since in many cases, a
tester only needs to check automatically a subset of a system
specification (usually the most critical parts) the separation
between system specification and oracle specification can be
useful and appropriate. The whole system can be specified at a
higher abstraction level and in a rather informal way, while the
parts of interest can be transformed into a very detailed and
precise specification, which can be used as oracle information.
An oracle procedure, then, must compare the obtained result
against the formal specification. Therefore, such procedure
must be able to interpret the formal specification.

Mapping oracle information to implementations: to check
the implementation against a formal specification (oracle
information), one needs to transform concrete values; those
that come from the implementation, into abstract ones, which
are in the domain of the formal specification. To this end, a
retrieve function is in charge of mapping concrete input data to
abstract inputs, and concrete output data to abstract ones.

There are several approaches to such mapping. Some
specification languages, such as Z, Object Z, and algebraic
specifications allow the representation of classes. These classes
are referred as abstract data types [21].

According to Peters [22], there are restrictions on writing a
specification that can be used as oracle. Programming
languages are usually richer than specification languages and
thus the latter must often mimic some of the constructs that are
freely available in the former. For example, the use of primitive
relational operators like “=” is valid only for basic data types;
more complex types, such as structures and objects, require the
operator be defined through auxiliary predicates.

Similarly, many formal languages do not provide the
concept of null object, which is quite a standard feature of

many programming languages. These restrictions may hamper
the mapping between specification and implementation.

To bypass some of the mapping complexity, one could use
assertions in the form of pre- and post-conditions and
invariants, that embed the formal specification: rigorous
expressions embedded in the implementation by specifying the
circumstances and conditions under which the execution can be
considered correct. Java, for example, allows one to probe the
correctness of any statement in the code by using the assert
keyword followed by a correct boolean expression that
predicates on the values of interest. If the expression does not
hold true, the execution environment raises an assertion
exception.

Embedded assertions [15] can be written in the same
language as the one used to implement the program or they can
be written in another language. In the latter, the code can be
written within the language comment marks and an external
interpreter is responsible to locate and to execute the assertions.

An issue on the embedded assertion approach may be
found if the oracle represents a substantial part of the code. In
this case, it can reduce performance when embedded in the
code, but removing them after the test phase can cause
unexpected problems such as changing the behavior over time,
which may be critical for real-time systems. Also, consistency
between test oracle specification and the program
implementation should be ensured [23], which can be a
problem in software maintenance.

Wrappers represent an alternative for embedded assertions.
The oracle specification, in this case, does not incur in the code
modification. Given a class or component under test, the tester
creates a second class with the same interface as the original,
but with methods containing contracts to be checked. A test
driver communicates with the wrapper that checks if the class
under test complies with the specified.

The representation layer of the wrapper is responsible for
the conversion of concrete values into abstract values and the
abstraction layer compares the abstract values with the post-
conditions. The wrapper class overwrites the public methods of
the original class. These overwritten methods call the original
methods and the test is performed by running the wrapper.

The constraints can be written in an external environment
which can be part of a tool set. This tool can have mechanisms
to allow one to map the constraints to the implementation and a
checker that compares the mapped outputs, or even internal
states, with the constraints.

Many approaches we have found by our systematic review
are some kind of variation of what we presented in this
subsection. Some works focus on different specification
languages, others present a known approach with different
examples.

For example, Cheon [24] proposes an automated testing
approach for Java programs by combining random testing and
assertions in OCL. The OCL constraints are translated to
runtime checks in AspectJ. The resulting aspect is called
constraint checking aspect and it exists separately from the
implementation code. The OCL constraints are translated to
pointcuts and advices. Pointcuts define execution points and

of events: the analyzer highlights a failure every time there is a
mismatch with what is expected by the state machine.

Some tools, as Simulink, can generate code automatically
from a model, which removes the need for manual coding. A
convenient feature of such tool is that a model can be executed
and its behavior can be analyzed prior to the code generation.
The complexity of such model, however, imposes their
verification: oftentimes one uses higher level specifications as
a Simulink model, and the same issue remains: how can one
compare the outputs produced by a model or by the code with
its specification? A possible solution is the use of partial
oracles, that is, constraints are used to analyze whether an
output generated by the model execution is acceptable. This
solution may be seen as a simplified way to check the model
by focusing on its critical aspects. These constraints should be
described formally to eliminate any ambiguity.

Examples of specification languages that are used to
describe such constraints (or rules) are: Z, Object Z, OCL,
Eiffel, VDM, JML, state machines, SDL and MITL.

The rest of this section discusses the trade-off between
using parts or complete specifications as oracle information,
the different approaches for comparing the outputs produced
by the implementation and the oracle, and some examples of
oracles in particular domains.

System and oracle specifications: since in many cases, a
tester only needs to check automatically a subset of a system
specification (usually the most critical parts) the separation
between system specification and oracle specification can be
useful and appropriate. The whole system can be specified at a
higher abstraction level and in a rather informal way, while the
parts of interest can be transformed into a very detailed and
precise specification, which can be used as oracle information.
An oracle procedure, then, must compare the obtained result
against the formal specification. Therefore, such procedure
must be able to interpret the formal specification.

Mapping oracle information to implementations: to check
the implementation against a formal specification (oracle
information), one needs to transform concrete values; those
that come from the implementation, into abstract ones, which
are in the domain of the formal specification. To this end, a
retrieve function is in charge of mapping concrete input data to
abstract inputs, and concrete output data to abstract ones.

There are several approaches to such mapping. Some
specification languages, such as Z, Object Z, and algebraic
specifications allow the representation of classes. These classes
are referred as abstract data types [21].

According to Peters [22], there are restrictions on writing a
specification that can be used as oracle. Programming
languages are usually richer than specification languages and
thus the latter must often mimic some of the constructs that are
freely available in the former. For example, the use of primitive
relational operators like “=” is valid only for basic data types;
more complex types, such as structures and objects, require the
operator be defined through auxiliary predicates.

Similarly, many formal languages do not provide the
concept of null object, which is quite a standard feature of

many programming languages. These restrictions may hamper
the mapping between specification and implementation.

To bypass some of the mapping complexity, one could use
assertions in the form of pre- and post-conditions and
invariants, that embed the formal specification: rigorous
expressions embedded in the implementation by specifying the
circumstances and conditions under which the execution can be
considered correct. Java, for example, allows one to probe the
correctness of any statement in the code by using the assert
keyword followed by a correct boolean expression that
predicates on the values of interest. If the expression does not
hold true, the execution environment raises an assertion
exception.

Embedded assertions [15] can be written in the same
language as the one used to implement the program or they can
be written in another language. In the latter, the code can be
written within the language comment marks and an external
interpreter is responsible to locate and to execute the assertions.

An issue on the embedded assertion approach may be
found if the oracle represents a substantial part of the code. In
this case, it can reduce performance when embedded in the
code, but removing them after the test phase can cause
unexpected problems such as changing the behavior over time,
which may be critical for real-time systems. Also, consistency
between test oracle specification and the program
implementation should be ensured [23], which can be a
problem in software maintenance.

Wrappers represent an alternative for embedded assertions.
The oracle specification, in this case, does not incur in the code
modification. Given a class or component under test, the tester
creates a second class with the same interface as the original,
but with methods containing contracts to be checked. A test
driver communicates with the wrapper that checks if the class
under test complies with the specified.

The representation layer of the wrapper is responsible for
the conversion of concrete values into abstract values and the
abstraction layer compares the abstract values with the post-
conditions. The wrapper class overwrites the public methods of
the original class. These overwritten methods call the original
methods and the test is performed by running the wrapper.

The constraints can be written in an external environment
which can be part of a tool set. This tool can have mechanisms
to allow one to map the constraints to the implementation and a
checker that compares the mapped outputs, or even internal
states, with the constraints.

Many approaches we have found by our systematic review
are some kind of variation of what we presented in this
subsection. Some works focus on different specification
languages, others present a known approach with different
examples.

For example, Cheon [24] proposes an automated testing
approach for Java programs by combining random testing and
assertions in OCL. The OCL constraints are translated to
runtime checks in AspectJ. The resulting aspect is called
constraint checking aspect and it exists separately from the
implementation code. The OCL constraints are translated to
pointcuts and advices. Pointcuts define execution points and

52

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

advices perform constraint checks. The authors cite the
Dresden Toolkit [25], which can interpret OCL constraints on a
UML model and generates runtime constraints checking code
in AspectJ. They suggest adapting this tool for their proposed
approach.

Nardi [26] presents a process, a method and a tool for
generating oracles for Simulink-like models. TRIO/Apolom, a
temporal specification language adapted from TRIO [27], is
used to describe the oracle information. Apolom, an oracle
generator, allows the definition of an oracle information and
the mapping between the Simulink model and the oracle
information. It also interprets the oracle information written in
TRIO/Apolom and compares it against the results from a
Simulink model execution.

The oracle definition process behind its solution, presented
in Figure 2, consists of three steps: specification, mapping, and
instrumentation.

Fig. 2. Oracle definition process. Source: [26]

The oracle information states what the expected outcome is

and how it should be analyzed. A suitable mapping of the
attributes of the oracle specification onto the respective signals
of the model results in an instrumented version of the model.
The instrumentation inserts a block in each mapped signal to
produce log files during the simulation, allowing the oracle to
retrieve the data without impacting its behavior. The oracle
analysis (off line) states how to evaluate simulation data
against the specification.

In any specification-based approach, there are limitations
related to the level of information detail. Using constraints, the
oracle can report false positives, i.e., it can report a “pass”
verdict when the result is actually wrong. But it will not report
a false negative (a “fail” when the result is correct), except if
the oracle specification is incorrect. For example, let us
suppose a program which calculates the sine function and a
post-condition (used by the oracle) which determines that any
value below -1 and above 1 is incorrect. If the program returns
2 as output, the specification-based oracle will report a “fail”
correctly. And for all “fail” reports, the oracle will be always
right. However, if the program returns sin(90)=0.5 as an
output, the oracle will report as a “pass” because the output is
between -1 and 1, but the result is incorrect (a false positive).
Such limitation means that when the oracle states an incorrect
output, the verdict is reliable; but when it states that the output
is in agreement with the specification, the oracle may not be
reliable.

Temporal specifications: on our systematic review, we
found a particular context on the use of an oracle: real-time
systems, in which time is an important property to be
considered. Examples of languages used by oracles that allow

the specification of temporal properties are MITL [28], RTIL
[1], TRIO [26], timed Petri nets [29] and Lustre [30][7].

 Wang [28] presents an approach for automatic generation
of oracles for real-time systems based on MITL specification
(Metric Interval Temporal Logic). From this specification, one
can create a model in timed automata with accepting states
(TAAS), which is an automata that has clocks with two
attributes: new and old. Their values do not change until some
time designation exists in the current state. A sequence of
timed states satisfies the specification if it can reach a final
state of the automaton built from the specification.

There are also other concepts of time like those presented
in the following requirement of a Mars probe landing system:
in the event of an error condition, the system must switch to
emergency mode. The requirement description uses three
variables: Status, TimerInt and Done, as shown below:

“When the TimerInt reaches the Control System and the
reading of acceleration is not completed, the status should
change to Emergency within 60ms”.

Their representation in temporal logic is:

The square-shaped symbol represents “always in the

interval” and the diamond means “sometime in the interval”.
An automaton, in the example, was generated automatically

based on temporal logic, with 9 states and 20 transitions. Given
a timed state sequence, the oracle identifies whether it is
correct or not according to the specification.

B. Metamorphic relation based oracles
The concept of metamorphic testing can be understood as

follow: “although it may be impossible to know whether the
output of an application is correct for a particular input, these
applications often exhibit properties such as if an input or
system state is modified on a certain way, it can be predicted
the new output, given the original output” [31]. A metamorphic
relation expresses these properties.

Chen [32] presents a case study of metamorphic relations
applied to a sine function. The authors list ten metamorphic
relations such as sin(x) - sin(x+ 2π) = 0. Even without the
knowledge about the expected output, it is known that the
described relation must be true for any value of x. The tester
can create test cases whose inputs are x and x+2π. Then, if the
respective outputs subtraction is different of 0 or outside an
accepted precision threshold previously established, an error is
revealed.

In the literature, we could find that metamorphic relations
can be applied to a broad set of problems. As examples, in an
array ordering problem, a metamorphic relation may state that
the elements after and before the ordering must be the same. In
a program that calculates the shortest path on a graph [32], the
metamorphic relation shortestPath(H, A, C) = shortestPath(H,
A, B) + shortestPath(H,B,C) could be used as oracle
information, considering H as a graph, A and C as the origin

advices perform constraint checks. The authors cite the
Dresden Toolkit [25], which can interpret OCL constraints on a
UML model and generates runtime constraints checking code
in AspectJ. They suggest adapting this tool for their proposed
approach.

Nardi [26] presents a process, a method and a tool for
generating oracles for Simulink-like models. TRIO/Apolom, a
temporal specification language adapted from TRIO [27], is
used to describe the oracle information. Apolom, an oracle
generator, allows the definition of an oracle information and
the mapping between the Simulink model and the oracle
information. It also interprets the oracle information written in
TRIO/Apolom and compares it against the results from a
Simulink model execution.

The oracle definition process behind its solution, presented
in Figure 2, consists of three steps: specification, mapping, and
instrumentation.

Fig. 2. Oracle definition process. Source: [26]

The oracle information states what the expected outcome is

and how it should be analyzed. A suitable mapping of the
attributes of the oracle specification onto the respective signals
of the model results in an instrumented version of the model.
The instrumentation inserts a block in each mapped signal to
produce log files during the simulation, allowing the oracle to
retrieve the data without impacting its behavior. The oracle
analysis (off line) states how to evaluate simulation data
against the specification.

In any specification-based approach, there are limitations
related to the level of information detail. Using constraints, the
oracle can report false positives, i.e., it can report a “pass”
verdict when the result is actually wrong. But it will not report
a false negative (a “fail” when the result is correct), except if
the oracle specification is incorrect. For example, let us
suppose a program which calculates the sine function and a
post-condition (used by the oracle) which determines that any
value below -1 and above 1 is incorrect. If the program returns
2 as output, the specification-based oracle will report a “fail”
correctly. And for all “fail” reports, the oracle will be always
right. However, if the program returns sin(90)=0.5 as an
output, the oracle will report as a “pass” because the output is
between -1 and 1, but the result is incorrect (a false positive).
Such limitation means that when the oracle states an incorrect
output, the verdict is reliable; but when it states that the output
is in agreement with the specification, the oracle may not be
reliable.

Temporal specifications: on our systematic review, we
found a particular context on the use of an oracle: real-time
systems, in which time is an important property to be
considered. Examples of languages used by oracles that allow

the specification of temporal properties are MITL [28], RTIL
[1], TRIO [26], timed Petri nets [29] and Lustre [30][7].

 Wang [28] presents an approach for automatic generation
of oracles for real-time systems based on MITL specification
(Metric Interval Temporal Logic). From this specification, one
can create a model in timed automata with accepting states
(TAAS), which is an automata that has clocks with two
attributes: new and old. Their values do not change until some
time designation exists in the current state. A sequence of
timed states satisfies the specification if it can reach a final
state of the automaton built from the specification.

There are also other concepts of time like those presented
in the following requirement of a Mars probe landing system:
in the event of an error condition, the system must switch to
emergency mode. The requirement description uses three
variables: Status, TimerInt and Done, as shown below:

“When the TimerInt reaches the Control System and the
reading of acceleration is not completed, the status should
change to Emergency within 60ms”.

Their representation in temporal logic is:

The square-shaped symbol represents “always in the

interval” and the diamond means “sometime in the interval”.
An automaton, in the example, was generated automatically

based on temporal logic, with 9 states and 20 transitions. Given
a timed state sequence, the oracle identifies whether it is
correct or not according to the specification.

B. Metamorphic relation based oracles
The concept of metamorphic testing can be understood as

follow: “although it may be impossible to know whether the
output of an application is correct for a particular input, these
applications often exhibit properties such as if an input or
system state is modified on a certain way, it can be predicted
the new output, given the original output” [31]. A metamorphic
relation expresses these properties.

Chen [32] presents a case study of metamorphic relations
applied to a sine function. The authors list ten metamorphic
relations such as sin(x) - sin(x+ 2π) = 0. Even without the
knowledge about the expected output, it is known that the
described relation must be true for any value of x. The tester
can create test cases whose inputs are x and x+2π. Then, if the
respective outputs subtraction is different of 0 or outside an
accepted precision threshold previously established, an error is
revealed.

In the literature, we could find that metamorphic relations
can be applied to a broad set of problems. As examples, in an
array ordering problem, a metamorphic relation may state that
the elements after and before the ordering must be the same. In
a program that calculates the shortest path on a graph [32], the
metamorphic relation shortestPath(H, A, C) = shortestPath(H,
A, B) + shortestPath(H,B,C) could be used as oracle
information, considering H as a graph, A and C as the origin

53

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

and destiny nodes in H, and B as a node in the shortest path
between A and C.

But comparing outputs can be error-prone for large data
sets especially if small variations in the results do not mean
error indication or when there is non-determinism in the
results. For example, a NP-complete algorithm that finds a path
on a graph does not necessarily find the shortest path between
two points, but finds an acceptable one. Thus, a metamorphic
relation as shortestPath(A, C)=shortestPath(C, A) may not be
applicable because the algorithm may find two different paths
when the origin and destiny are inverted but, even so, the result
could be acceptable.

Ding [33] presents an experimental study on a “real-world”
program from the Biomedical Laser Laboratory at East
Carolina University. Metamorphic testing was applied on an
image processing program used to reconstruct 3D structure of
biology cells. As example of metamorphic relations, the tester
adds mitochondria with different shapes to the cell images so
that the 3D structures of these new mitochondria can be built.
Then, the original 3D structures should not be changed, and the
volume of mitochondria is expected to increase.

Mayer [34] describes an empirical study on metamorphic
testing with the use of Java applications that calculates the
determinant of a matrix. In conclusion, the authors suggested
four guidelines: metamorphic relations that are in the form of
equalities are especially weak; if the relation is an equation
with linear combinations on each side and at least two terms to
one side, then it is not vulnerable to erroneous additions but it
is vulnerable to erroneous multiplications; typically good
metamorphic relations contain much of the semantics of the
software under test; metamorphic relations similar to the
strategy used for implementation are limited. Chen [32] gives
the following guideline: metamorphic relations that cause
higher "difference between executions" tend to be better. But
this concept was not explicitly set. More research should be
conducted to provide broader and detailed guidelines.

Zhang [35] presents an experiment with 3 programs: Boyer,
which returns the index of first occurrence of a pattern in a
string; BooleanExpression, which validates boolean
expressions; and TxnTableSorter, an office application. The
subject participants were 38 postgraduate students enrolled in
an advanced software testing course. The authors investigated
(i) if the students could appropriately apply metamorphic
testing after being trained; (ii) if they could identify correctly
and usefully metamorphic relations to the target program; and
(iii) if the same metamorphic relation could be discovered by
multiple students. For all these questions, the answer was yes.
They also investigated what is the effort in terms of cost, in
applying metamorphic testing. According to the results,
metamorphic testing has the potential to detect more failures
than assertion checking. On the other hand, may be less
efficient in terms of cost.

In general, students identified a greater number of
assertions than metamorphic relations. The number of
metamorphic relations and assertions found varied significantly
among students. The authors believe that metamorphic testing

helps developers to increase the level of abstraction better than
assertions.

Oracles based on metamorphic testing rely on relations that
are specific to the system domain and may not be evident to be
found. According to Chan [36], the choice of metamorphic
relations was based on experience of the testers. All the works
we have found present study case of simple programs or
functions. Complex systems, with different functionalities
would require different sets of metamorphic relations.
Supporting that observation, Murphy [37] notes that
metamorphic testing can be a manually intensive technique for
more complex cases.

The reliability of a metamorphic relation based oracle is the
same as the specification based oracle.

C. Machine learning based oracles
Machine Learning, as neural networks, has the capacity to

simulate a software behavior based on the input/output pairs
[38]. They can be used as continuous [39] or discrete [40]
function approximators and that property can be explored to
build oracles. We have found the following neural networks
used as oracles: backpropagation, RBF (Radial Basis Function)
and SOM (Self-Organizing Map).

There are two kinds of operation procedures in a neural
network use: training and regression (or association, if the
network is used as as classifier [39]. Given a training set
composed by input/output pairs, a neural network (in the role
of continuous function approximator) is capable to find an
approximated function of an deterministic computational
process. Once trained, the network can generate, at the
regression operation, the expected outputs to input data that are
not part of the training set. For a neural network used as a
discrete function approximator, it can be trained with a set of
pairs input/output, where the output is a category to the input.
At the association operation, the network can classify other
inputs in one of the given categories.

As example, Aggarwal [40], Chan [36] and Jin [39] address
the use of neural networks as oracles in problems involving
classification. Two of these papers present as a case study, an
oracle for triangle classification into isosceles, scalene and
non-equilateral. The inputs are three integers that represent the
length sides of a triangle. The output is the classification in
equilateral, isosceles, scalene or not a triangle. It is given, as
training set, correct input/output pairs. After trained, the neural
network is able to classify new inputs into the presented
categories. But a neural network may misclassify the inputs.

According to Vanmali [41], neural network can be justified
for a variety of reasons, such as situations where the original
version is unavailable. There may be occasions where the input
and output data from the original program are not critical and
the application of a neural network instead of the original
program may save computer resources.

Shahamiri [38] presented an experiment with a registration-
verifier program. Based on the student records, the program
validates the registration, decides the maximum courses
students can select and if a discount is applicable or not. A

and destiny nodes in H, and B as a node in the shortest path
between A and C.

But comparing outputs can be error-prone for large data
sets especially if small variations in the results do not mean
error indication or when there is non-determinism in the
results. For example, a NP-complete algorithm that finds a path
on a graph does not necessarily find the shortest path between
two points, but finds an acceptable one. Thus, a metamorphic
relation as shortestPath(A, C)=shortestPath(C, A) may not be
applicable because the algorithm may find two different paths
when the origin and destiny are inverted but, even so, the result
could be acceptable.

Ding [33] presents an experimental study on a “real-world”
program from the Biomedical Laser Laboratory at East
Carolina University. Metamorphic testing was applied on an
image processing program used to reconstruct 3D structure of
biology cells. As example of metamorphic relations, the tester
adds mitochondria with different shapes to the cell images so
that the 3D structures of these new mitochondria can be built.
Then, the original 3D structures should not be changed, and the
volume of mitochondria is expected to increase.

Mayer [34] describes an empirical study on metamorphic
testing with the use of Java applications that calculates the
determinant of a matrix. In conclusion, the authors suggested
four guidelines: metamorphic relations that are in the form of
equalities are especially weak; if the relation is an equation
with linear combinations on each side and at least two terms to
one side, then it is not vulnerable to erroneous additions but it
is vulnerable to erroneous multiplications; typically good
metamorphic relations contain much of the semantics of the
software under test; metamorphic relations similar to the
strategy used for implementation are limited. Chen [32] gives
the following guideline: metamorphic relations that cause
higher "difference between executions" tend to be better. But
this concept was not explicitly set. More research should be
conducted to provide broader and detailed guidelines.

Zhang [35] presents an experiment with 3 programs: Boyer,
which returns the index of first occurrence of a pattern in a
string; BooleanExpression, which validates boolean
expressions; and TxnTableSorter, an office application. The
subject participants were 38 postgraduate students enrolled in
an advanced software testing course. The authors investigated
(i) if the students could appropriately apply metamorphic
testing after being trained; (ii) if they could identify correctly
and usefully metamorphic relations to the target program; and
(iii) if the same metamorphic relation could be discovered by
multiple students. For all these questions, the answer was yes.
They also investigated what is the effort in terms of cost, in
applying metamorphic testing. According to the results,
metamorphic testing has the potential to detect more failures
than assertion checking. On the other hand, may be less
efficient in terms of cost.

In general, students identified a greater number of
assertions than metamorphic relations. The number of
metamorphic relations and assertions found varied significantly
among students. The authors believe that metamorphic testing

helps developers to increase the level of abstraction better than
assertions.

Oracles based on metamorphic testing rely on relations that
are specific to the system domain and may not be evident to be
found. According to Chan [36], the choice of metamorphic
relations was based on experience of the testers. All the works
we have found present study case of simple programs or
functions. Complex systems, with different functionalities
would require different sets of metamorphic relations.
Supporting that observation, Murphy [37] notes that
metamorphic testing can be a manually intensive technique for
more complex cases.

The reliability of a metamorphic relation based oracle is the
same as the specification based oracle.

C. Machine learning based oracles
Machine Learning, as neural networks, has the capacity to

simulate a software behavior based on the input/output pairs
[38]. They can be used as continuous [39] or discrete [40]
function approximators and that property can be explored to
build oracles. We have found the following neural networks
used as oracles: backpropagation, RBF (Radial Basis Function)
and SOM (Self-Organizing Map).

There are two kinds of operation procedures in a neural
network use: training and regression (or association, if the
network is used as as classifier [39]. Given a training set
composed by input/output pairs, a neural network (in the role
of continuous function approximator) is capable to find an
approximated function of an deterministic computational
process. Once trained, the network can generate, at the
regression operation, the expected outputs to input data that are
not part of the training set. For a neural network used as a
discrete function approximator, it can be trained with a set of
pairs input/output, where the output is a category to the input.
At the association operation, the network can classify other
inputs in one of the given categories.

As example, Aggarwal [40], Chan [36] and Jin [39] address
the use of neural networks as oracles in problems involving
classification. Two of these papers present as a case study, an
oracle for triangle classification into isosceles, scalene and
non-equilateral. The inputs are three integers that represent the
length sides of a triangle. The output is the classification in
equilateral, isosceles, scalene or not a triangle. It is given, as
training set, correct input/output pairs. After trained, the neural
network is able to classify new inputs into the presented
categories. But a neural network may misclassify the inputs.

According to Vanmali [41], neural network can be justified
for a variety of reasons, such as situations where the original
version is unavailable. There may be occasions where the input
and output data from the original program are not critical and
the application of a neural network instead of the original
program may save computer resources.

Shahamiri [38] presented an experiment with a registration-
verifier program. Based on the student records, the program
validates the registration, decides the maximum courses
students can select and if a discount is applicable or not. A

54

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

backpropagation neural network was used as an oracle. The
authors evaluated the oracle with a golden version of the test
cases and mutated test cases. Comparing the results between
the golden version and the oracle outputs and the results
between the oracle outputs and the mutated test cases, the
authors measured the total of true positives, true negatives,
false positives and false negatives. The oracle accuracy was of
95.37%.

Neural networks are not the only machine learning
resource. Wang et al.[42] apply support vector machine as
supervised learning algorithm (SLA) to test reactive systems.
In a first step, user guidance or assertions can be used to collect
verdicts to test traces. Such traces are converted into feature
vectors to rain the SLA, which is used as test oracle. In the
experiment, statements are inserted into the software under test
(SUT) to collect the verdicts. Also, bugs were implemented
into the SUTs to check the correct verdicts of the test oracle.
The results show that the proposed technique incurs little
burden and overhead. The training time varies between 5 and
42 seconds and the testing time varies between 2 and 29
seconds. The correct verdicts fluctuate between 92.88% and
96.52%.

There are limitations on the use of machine learning as
oracle. They can report false positives and false negatives. This
means that if it states that the output is incorrect, the oracle
may be wrong as much as if it states that the output is in
agreement with the specification. In both cases, the tester must
check if the oracle verdict is correct. In case of false negatives,
a tester will spend time searching for an error that does not
exist.

The neural network accuracy and precision is related with
the comparator threshold [38]. This property defines the oracle
precision and it represents an interval. If the difference between
the expected output and the obtained output is inside this
interval, the oracle should report a “pass”. Otherwise, the test
failed. With higher threshold (higher interval acceptance), an
oracle may present more false positives. With lower threshold,
the comparison may be more precise but they may report more
false negatives and may lose accuracy.

Because neural network are approximators, the tester must
be aware about the uncertainty characteristic of such oracles.
Their reliability may reside on statistical data, as expected
accuracy based on previous similar case studies. But when
using these oracles on new domains, the tester may not have
parameters to decide about the oracle reliability.

Other limitations are observed by Jin [39]: the input data
may not be easily represented by neural networks, as characters
and strings. Still, different elements in the input vector may
have unequal contribution to the network. Deciding the
structure of the network may not be easy, as the amount of
layers and neurons. How to select the training set from the test
cases is another key problem that must be considered carefully.

After our systematic review we noted a lack of studies in
the area. Most papers focus on the ANN viability as oracles,
but more research need to be done as comparisons between
oracles, the influence of different weights, bias, activation
functions, layers and topologies. For instance, Lu [43]

conclude that the use of RBF is feasible as an oracle, and
besides the evident contribution, there is no comparison with
other neural networks.

D. N-version and similars
N-version is based on several implementations of the

program, developed independently, and with the same
functionality of the software under test [2]. These versions are
used as pseudo-oracles. If there is disagreement about the
output in the versions, the decision is based on voting and the
most common values are used as the expected outputs. As
example, Shimeall [44] use the n-version concept on programs
written in Pascal from a specification for a problem of combat
simulation.

Another approach, a variation of n-version, is m-mp. In this
approach, just the core functionality, or those that are critical, is
implemented as an oracle. It provides low cost based on the
justification that the program model do not need to be
equivalent to the main program [45].

The idea of comparing results between two or more
implementation can be extended to programs that already exist.
A golden version of a program can be used as an oracle, for
example in regression testing, component harvesting [46] or
“Multiple-implementation Testing” (MiT) [47].

Tsai et al. [48][49] propose a technique of majority voting
to test a large number of Web Services (WS) that already exist
and belong to a single specification.

Hummel [46] propose the creation of oracles from the same
basic technologies that can be used to find components for
reuse (such as Extreme Harvesting). Thus, it uses the
components found in the Internet searches combined as a
pseudo-oracle to measure the confidence of the built
components.

A few limitations on oracles based in n-version can be
quoted. When a system is stable, it can be used as oracle to test
new versions, but just for the old functionalities. If new
characteristics are added, they will need other kind of oracle.
This not means that they are useless, but it means that other
oracles should be used to test the additions.

In n-version, the approach requires multiple
implementations of the system and, consequently, it has high
cost. Besides, the oracle is not reliable because it can have
errors, as the program under test. The difference is that, using
different teams and approaches, it is less probable the both
versions contain the same defects. If so, it may be unlikely that
the oracle and the program generate the same wrong output,
which means that it is improbable that the comparator report
that the program passed the test even if it should report as a fail
(false positives).

But, because the tester must verify if it is the oracle or the
program under test that is defective, an extra time is needed
and it may influence on the cost.

Shimeall [44] mentions that n-version is not a substitute for
functional tests. In the experiment, n-version did not tolerate
many of the failures detected by other techniques to eliminate
failure.

backpropagation neural network was used as an oracle. The
authors evaluated the oracle with a golden version of the test
cases and mutated test cases. Comparing the results between
the golden version and the oracle outputs and the results
between the oracle outputs and the mutated test cases, the
authors measured the total of true positives, true negatives,
false positives and false negatives. The oracle accuracy was of
95.37%.

Neural networks are not the only machine learning
resource. Wang et al.[42] apply support vector machine as
supervised learning algorithm (SLA) to test reactive systems.
In a first step, user guidance or assertions can be used to collect
verdicts to test traces. Such traces are converted into feature
vectors to rain the SLA, which is used as test oracle. In the
experiment, statements are inserted into the software under test
(SUT) to collect the verdicts. Also, bugs were implemented
into the SUTs to check the correct verdicts of the test oracle.
The results show that the proposed technique incurs little
burden and overhead. The training time varies between 5 and
42 seconds and the testing time varies between 2 and 29
seconds. The correct verdicts fluctuate between 92.88% and
96.52%.

There are limitations on the use of machine learning as
oracle. They can report false positives and false negatives. This
means that if it states that the output is incorrect, the oracle
may be wrong as much as if it states that the output is in
agreement with the specification. In both cases, the tester must
check if the oracle verdict is correct. In case of false negatives,
a tester will spend time searching for an error that does not
exist.

The neural network accuracy and precision is related with
the comparator threshold [38]. This property defines the oracle
precision and it represents an interval. If the difference between
the expected output and the obtained output is inside this
interval, the oracle should report a “pass”. Otherwise, the test
failed. With higher threshold (higher interval acceptance), an
oracle may present more false positives. With lower threshold,
the comparison may be more precise but they may report more
false negatives and may lose accuracy.

Because neural network are approximators, the tester must
be aware about the uncertainty characteristic of such oracles.
Their reliability may reside on statistical data, as expected
accuracy based on previous similar case studies. But when
using these oracles on new domains, the tester may not have
parameters to decide about the oracle reliability.

Other limitations are observed by Jin [39]: the input data
may not be easily represented by neural networks, as characters
and strings. Still, different elements in the input vector may
have unequal contribution to the network. Deciding the
structure of the network may not be easy, as the amount of
layers and neurons. How to select the training set from the test
cases is another key problem that must be considered carefully.

After our systematic review we noted a lack of studies in
the area. Most papers focus on the ANN viability as oracles,
but more research need to be done as comparisons between
oracles, the influence of different weights, bias, activation
functions, layers and topologies. For instance, Lu [43]

conclude that the use of RBF is feasible as an oracle, and
besides the evident contribution, there is no comparison with
other neural networks.

D. N-version and similars
N-version is based on several implementations of the

program, developed independently, and with the same
functionality of the software under test [2]. These versions are
used as pseudo-oracles. If there is disagreement about the
output in the versions, the decision is based on voting and the
most common values are used as the expected outputs. As
example, Shimeall [44] use the n-version concept on programs
written in Pascal from a specification for a problem of combat
simulation.

Another approach, a variation of n-version, is m-mp. In this
approach, just the core functionality, or those that are critical, is
implemented as an oracle. It provides low cost based on the
justification that the program model do not need to be
equivalent to the main program [45].

The idea of comparing results between two or more
implementation can be extended to programs that already exist.
A golden version of a program can be used as an oracle, for
example in regression testing, component harvesting [46] or
“Multiple-implementation Testing” (MiT) [47].

Tsai et al. [48][49] propose a technique of majority voting
to test a large number of Web Services (WS) that already exist
and belong to a single specification.

Hummel [46] propose the creation of oracles from the same
basic technologies that can be used to find components for
reuse (such as Extreme Harvesting). Thus, it uses the
components found in the Internet searches combined as a
pseudo-oracle to measure the confidence of the built
components.

A few limitations on oracles based in n-version can be
quoted. When a system is stable, it can be used as oracle to test
new versions, but just for the old functionalities. If new
characteristics are added, they will need other kind of oracle.
This not means that they are useless, but it means that other
oracles should be used to test the additions.

In n-version, the approach requires multiple
implementations of the system and, consequently, it has high
cost. Besides, the oracle is not reliable because it can have
errors, as the program under test. The difference is that, using
different teams and approaches, it is less probable the both
versions contain the same defects. If so, it may be unlikely that
the oracle and the program generate the same wrong output,
which means that it is improbable that the comparator report
that the program passed the test even if it should report as a fail
(false positives).

But, because the tester must verify if it is the oracle or the
program under test that is defective, an extra time is needed
and it may influence on the cost.

Shimeall [44] mentions that n-version is not a substitute for
functional tests. In the experiment, n-version did not tolerate
many of the failures detected by other techniques to eliminate
failure.

55

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

V. DISCUSSION
Table 1 presents a comparison among the oracle categories

and their limitations. For each category, it is presented a
resume of its limitations, if the oracle generates false negatives
and false positives, if practical application in the industry was
found (excluded the experimental studies with industrial
examples), and how an oracle handles non-deterministic
results. The summary is composed in order to answer the
following questions:

 Which limitations has an oracle?
 How much an oracle can be precise?
 Is an oracle applied on “real-world” systems?
 Is an oracle costly?

These questions may help the tester to decide what oracles

are suitable or worth of being considered.
We believe the oracle categories are complementary and

their integration can improve the capability to find errors. For
example, if there is a set of well defined rules that must be
followed and the system has a golden version, both
specification-based and n-version-like oracles could be used. If
a system is a classifier and there is a set of well defined rules,
neural networks and specification-based oracles could be used.

In our research, we found that most works focus on
specification-based oracles. This category and n-version are
found since late 80's while machine learning and metamorphic
testing as oracles are found after year 2000.

Some oracles are notably useful on a specific context as

regression testing and when a golden version is available.
Other oracles, as neural networks and metamorphic testing

based oracles, even promising, need more study.
We have found that most works use simple examples and

we did not find many papers presenting experiments in the
industry or ``real-world'' systems. This is a gap that we found
when conducting the systematic review. Possibly, it is a
shortage on Industry feedback or a lack of practical studies.
Just a few approaches were applied to “real-world” systems
(Leto and T-Vec, for instance) and their use means changes in
the development process that some Companies may not be
inclined to deal. We could not find an oracle specification
language, environment or method that could be easily
implanted. Such observation led us to tackle such gap and we
defined a process, method and tool which allows the generation
of test oracles for Simulink-like models [26][50]. To note [51]:
(i) the oracle information can be almost as complex as the
program under testing and must be checked carefully.
Supporting this difficulty, Kim et al. [52] cite the trade-off
between the specification precision and the simplicity; (ii) the
test harness (or the oracle procedure) is not a trivial program
and should be checked carefully.

We cite a few promising fields to explore, as the research
on easier ways to apply specification languages, which must be
executable to allow its implementation, and that allow one to
describe the specification on different abstraction layers. A
search for specification languages with high usability has been

TABLE 1. Comparative table between different oracle categories
Category Limitations False

negative
False

positive
Practical
appliance

Complexity
to apply

Non-
determinism

Specification If the specification is wrong, the test is
pointless A complete and consistent
specification can be almost as complex
as the implementation
May be a missing concept between the
specification layer and the
implementation layer
The specification must be mapped to
the implementation

If the
specification

is wrong

Yes Found Relies on the
specification
detailing
level

May be
easy to
handle

Metamorphic
relation

The metamorphic relation may not be
trivial to find and resides in the tester
experience
Same limitations as specification-based
oracles

If the
metamorphic

relation is
wrong

Yes Not found Relies on the
tester

experience to
define the

metamorphic
relations

Hard to
handle

Machine
learning

They are function approximators. The
network precision depends on many
variables and may not be easy to
achieve.

Yes Yes Not found Relies on
how difficult
is to prepare
the input set

Hard to
handle

N-version and
similar

It can be very costly
A golden version may not be available
There is no guarantee that the version
is error free

Yes Yes Found If a golden
version is

available, it is
usually easy

to apply

Hard to
handle

V. DISCUSSION
Table 1 presents a comparison among the oracle categories

and their limitations. For each category, it is presented a
resume of its limitations, if the oracle generates false negatives
and false positives, if practical application in the industry was
found (excluded the experimental studies with industrial
examples), and how an oracle handles non-deterministic
results. The summary is composed in order to answer the
following questions:

 Which limitations has an oracle?
 How much an oracle can be precise?
 Is an oracle applied on “real-world” systems?
 Is an oracle costly?

These questions may help the tester to decide what oracles

are suitable or worth of being considered.
We believe the oracle categories are complementary and

their integration can improve the capability to find errors. For
example, if there is a set of well defined rules that must be
followed and the system has a golden version, both
specification-based and n-version-like oracles could be used. If
a system is a classifier and there is a set of well defined rules,
neural networks and specification-based oracles could be used.

In our research, we found that most works focus on
specification-based oracles. This category and n-version are
found since late 80's while machine learning and metamorphic
testing as oracles are found after year 2000.

Some oracles are notably useful on a specific context as

regression testing and when a golden version is available.
Other oracles, as neural networks and metamorphic testing

based oracles, even promising, need more study.
We have found that most works use simple examples and

we did not find many papers presenting experiments in the
industry or ``real-world'' systems. This is a gap that we found
when conducting the systematic review. Possibly, it is a
shortage on Industry feedback or a lack of practical studies.
Just a few approaches were applied to “real-world” systems
(Leto and T-Vec, for instance) and their use means changes in
the development process that some Companies may not be
inclined to deal. We could not find an oracle specification
language, environment or method that could be easily
implanted. Such observation led us to tackle such gap and we
defined a process, method and tool which allows the generation
of test oracles for Simulink-like models [26][50]. To note [51]:
(i) the oracle information can be almost as complex as the
program under testing and must be checked carefully.
Supporting this difficulty, Kim et al. [52] cite the trade-off
between the specification precision and the simplicity; (ii) the
test harness (or the oracle procedure) is not a trivial program
and should be checked carefully.

We cite a few promising fields to explore, as the research
on easier ways to apply specification languages, which must be
executable to allow its implementation, and that allow one to
describe the specification on different abstraction layers. A
search for specification languages with high usability has been

TABLE 1. Comparative table between different oracle categories
Category Limitations False

negative
False

positive
Practical
appliance

Complexity
to apply

Non-
determinism

Specification If the specification is wrong, the test is
pointless A complete and consistent
specification can be almost as complex
as the implementation
May be a missing concept between the
specification layer and the
implementation layer
The specification must be mapped to
the implementation

If the
specification

is wrong

Yes Found Relies on the
specification
detailing
level

May be
easy to
handle

Metamorphic
relation

The metamorphic relation may not be
trivial to find and resides in the tester
experience
Same limitations as specification-based
oracles

If the
metamorphic

relation is
wrong

Yes Not found Relies on the
tester

experience to
define the

metamorphic
relations

Hard to
handle

Machine
learning

They are function approximators. The
network precision depends on many
variables and may not be easy to
achieve.

Yes Yes Not found Relies on
how difficult
is to prepare
the input set

Hard to
handle

N-version and
similar

It can be very costly
A golden version may not be available
There is no guarantee that the version
is error free

Yes Yes Found If a golden
version is

available, it is
usually easy

to apply

Hard to
handle

V. DISCUSSION
Table 1 presents a comparison among the oracle categories

and their limitations. For each category, it is presented a
resume of its limitations, if the oracle generates false negatives
and false positives, if practical application in the industry was
found (excluded the experimental studies with industrial
examples), and how an oracle handles non-deterministic
results. The summary is composed in order to answer the
following questions:

 Which limitations has an oracle?
 How much an oracle can be precise?
 Is an oracle applied on “real-world” systems?
 Is an oracle costly?

These questions may help the tester to decide what oracles

are suitable or worth of being considered.
We believe the oracle categories are complementary and

their integration can improve the capability to find errors. For
example, if there is a set of well defined rules that must be
followed and the system has a golden version, both
specification-based and n-version-like oracles could be used. If
a system is a classifier and there is a set of well defined rules,
neural networks and specification-based oracles could be used.

In our research, we found that most works focus on
specification-based oracles. This category and n-version are
found since late 80's while machine learning and metamorphic
testing as oracles are found after year 2000.

Some oracles are notably useful on a specific context as

regression testing and when a golden version is available.
Other oracles, as neural networks and metamorphic testing

based oracles, even promising, need more study.
We have found that most works use simple examples and

we did not find many papers presenting experiments in the
industry or ``real-world'' systems. This is a gap that we found
when conducting the systematic review. Possibly, it is a
shortage on Industry feedback or a lack of practical studies.
Just a few approaches were applied to “real-world” systems
(Leto and T-Vec, for instance) and their use means changes in
the development process that some Companies may not be
inclined to deal. We could not find an oracle specification
language, environment or method that could be easily
implanted. Such observation led us to tackle such gap and we
defined a process, method and tool which allows the generation
of test oracles for Simulink-like models [26][50]. To note [51]:
(i) the oracle information can be almost as complex as the
program under testing and must be checked carefully.
Supporting this difficulty, Kim et al. [52] cite the trade-off
between the specification precision and the simplicity; (ii) the
test harness (or the oracle procedure) is not a trivial program
and should be checked carefully.

We cite a few promising fields to explore, as the research
on easier ways to apply specification languages, which must be
executable to allow its implementation, and that allow one to
describe the specification on different abstraction layers. A
search for specification languages with high usability has been

TABLE 1. Comparative table between different oracle categories
Category Limitations False

negative
False

positive
Practical
appliance

Complexity
to apply

Non-
determinism

Specification If the specification is wrong, the test is
pointless A complete and consistent
specification can be almost as complex
as the implementation
May be a missing concept between the
specification layer and the
implementation layer
The specification must be mapped to
the implementation

If the
specification

is wrong

Yes Found Relies on the
specification
detailing
level

May be
easy to
handle

Metamorphic
relation

The metamorphic relation may not be
trivial to find and resides in the tester
experience
Same limitations as specification-based
oracles

If the
metamorphic

relation is
wrong

Yes Not found Relies on the
tester

experience to
define the

metamorphic
relations

Hard to
handle

Machine
learning

They are function approximators. The
network precision depends on many
variables and may not be easy to
achieve.

Yes Yes Not found Relies on
how difficult
is to prepare
the input set

Hard to
handle

N-version and
similar

It can be very costly
A golden version may not be available
There is no guarantee that the version
is error free

Yes Yes Found If a golden
version is

available, it is
usually easy

to apply

Hard to
handle

56

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

increased in the last years [13]. It can be noticed, in the
literature, a recent preference by specification languages that
are of common use in the industry and academic environments
or that have a well known paradigm, namely java assertions,
OCL, JML, state-machines and VDM. This former is used in
the industry. Many attempts to use such languages focus on
specific domains, as java programs, executable UML and log
verification. For practical and disseminated application of
automated test oracles, it is expected the adoption of
specifications with higher usability, which leads to studies
about specification language usability.

User-friendly oracle environments may have the same
importance of the specification language when considering the
application in “real-world” scenarios. An oracle environment
should allow the tester to describe the oracle specification in
different levels of abstraction and as much complete as it is
needed, from a few constraints to an entire and complete
system specification. Also, the integration of an oracle
environment with different languages and platforms could be
explored. Only a few works, as in [26], have tackled such
issues.

Another field to explore includes the oracle development
processes and methods. As discussed, there is a trade-off
between choosing a system specification as an oracle
specification or the creation of a separated one. Also, it may
not be trivial to track and maintaining the updates between the
system specification and oracle specification. We believe that
more research should be done on tools that provide such
mechanisms.

VI. FINAL REMARKS
The importance of testing activity is widely known.

However, the difficulty in deciding whether a result is
acceptable or not (also known as the oracle problem) hampers
such activity.

The comparison between expected output and obtained
output is oftentimes executed manually by the tester, which is
usually slow, error-prone, and very expensive. Several
approaches have been proposed in order to soften the oracle
problem and automate the process.

The main contribution of this paper is presenting a critical
overview on test oracles, as well as its limitations. We also
highlighted possible fields yet to be explored. We aim to
provide a guideline to researchers and testers who seek to
soften the oracle problem.

REFERENCES

[1] D. Richardson, S. Aha, and T. O’Malley, “Specification-based
test oracles for reactive systems,” in International Conference on
Software Engineering., 1992, pp. 105–118.

[2] S. Shahamiri, W. Kadir, and S. Mohd-Hashim, “A comparative
study on automated software test oracle methods,” in ICSEA
’09: Fourth International Conference on Software Engineering
Advances., Sept. 2009, pp. 140–145.

[3] M. C. Gaudel, “Testing can be formal, too,” in Lecture Notes in

Computer Science, vol. 915. Springer-Verlag, 1995, pp. 82–96.

[4] E. J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, 1982.

[5] Y. Mao, F. Boqin, Z. Li, and L. Yao, “Automated test oracle
based on neural networks,” in Cognitive Informatics, 2006. ICCI
2006. 5th IEEE International Conference on, vol. 1, July 2006,
pp. 517–522.

[6] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle
should i use for effective gui testing?” in Proceedings of the
18th IEEE International Conference on Automated Software
Engineering., Oct. 2003, pp. 164– 173.

[7] G. Durrieu, H. Waeselynck, and V. Wiels, “Leto - a lutre-based
test or-acle for airbus critical systems,” Formal Methods for
Industrial Critical Systems: 13th International Workshop,
FMICS 2008, 2008.

[8] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-
testable programs,” in ACM ’81: Proceedings of the ACM ’81
conference. New York, NY, USA: ACM, 1981, pp. 254–257.

[9] D. Kim-Park, C. de la Riva, and J. Tuya, “A partial test oracle
for xml query testing,” in Testing: Academic and Industrial
Conference - Practice and Research Techniques, 2009. TAIC
PART ’09., sept. 2009, pp. 13 –20.

[10] A. Pasala, S. Rao, A. Gupta, and S. Gunturu, “On the validation
of api execution-sequence to assess the correctness of
application upon cots upgrades deployment,” in ICCBSS ’07:
Sixth International IEEE Con-ference o Commercial-off-the-
Shelf (COTS)-Based Software Systems., march 2007, pp. 225–
232.

[11] R. Shukla, D. Carrington, and P. Strooper, “A passive test oracle
using a component’s api,” in Software Engineering Conference,
2005. APSEC ’05. 12th Asia-Pacific, Dec. 2005, pp. 7

[12] P. A. Nardi and M. E. Delamaro, “Test oracles associated with
dynamical system models,” Universidade de So Paulo/So Carlos
- ICMC, Tech. Rep., 2011.

[13] R. A. Oliveira, U. Kanewala, and P. A. Nardi, “Chapter three -
automated test oracles: State of the art, taxonomies, and trends,”
ser. Advances in Computers, A. Memon, Ed. Elsevier, 2014,
vol. 95, pp. 113 – 199. [Online]. Available:
http://www.sciencedirect.com/science/
article/pii/B9780128001608000036

[14] S. Baharom and Z. Shukur, “Utilizing an abstraction relation
document in grey-box testing approach,” in ICEEI ’09:
International Conference on Electrical Engineering and
Informatics., vol. 01, Aug. 2009, pp. 304–308.

[15] L. Baresi and M. Young, “Test oracles,” University of Oregon,
Dept. of Computer and Information Science, Eugene, Oregon,
U.S.A., Tech-nical Report CIS-TR-01-02, August 2001,
http://www.cs.uoregon.edu/ michal/pubs/oracles.html.

[16] J. Hakansson, B. Jonsson, and O. Lundqvist, “Generating online
test oracles from temporal logic specifications,” International
Journal on Software Tools for Technology Transfer (STTT),
vol. 4, no. 4, pp. 456–471, Aug. 2003. [Online]. Available:
http://dx.doi.org/10.1007/ s10009-003-0107-8

[17] L. Lazic´ and D. Velaseviˇc, ́ “Applying simulation and design
of experiments to the embedded software testing process:
Research articles,” Softw. Test. Verif. Reliab., vol. 14, no. 4, pp.

increased in the last years [13]. It can be noticed, in the
literature, a recent preference by specification languages that
are of common use in the industry and academic environments
or that have a well known paradigm, namely java assertions,
OCL, JML, state-machines and VDM. This former is used in
the industry. Many attempts to use such languages focus on
specific domains, as java programs, executable UML and log
verification. For practical and disseminated application of
automated test oracles, it is expected the adoption of
specifications with higher usability, which leads to studies
about specification language usability.

User-friendly oracle environments may have the same
importance of the specification language when considering the
application in “real-world” scenarios. An oracle environment
should allow the tester to describe the oracle specification in
different levels of abstraction and as much complete as it is
needed, from a few constraints to an entire and complete
system specification. Also, the integration of an oracle
environment with different languages and platforms could be
explored. Only a few works, as in [26], have tackled such
issues.

Another field to explore includes the oracle development
processes and methods. As discussed, there is a trade-off
between choosing a system specification as an oracle
specification or the creation of a separated one. Also, it may
not be trivial to track and maintaining the updates between the
system specification and oracle specification. We believe that
more research should be done on tools that provide such
mechanisms.

VI. FINAL REMARKS
The importance of testing activity is widely known.

However, the difficulty in deciding whether a result is
acceptable or not (also known as the oracle problem) hampers
such activity.

The comparison between expected output and obtained
output is oftentimes executed manually by the tester, which is
usually slow, error-prone, and very expensive. Several
approaches have been proposed in order to soften the oracle
problem and automate the process.

The main contribution of this paper is presenting a critical
overview on test oracles, as well as its limitations. We also
highlighted possible fields yet to be explored. We aim to
provide a guideline to researchers and testers who seek to
soften the oracle problem.

REFERENCES

[1] D. Richardson, S. Aha, and T. O’Malley, “Specification-based
test oracles for reactive systems,” in International Conference on
Software Engineering., 1992, pp. 105–118.

[2] S. Shahamiri, W. Kadir, and S. Mohd-Hashim, “A comparative
study on automated software test oracle methods,” in ICSEA
’09: Fourth International Conference on Software Engineering
Advances., Sept. 2009, pp. 140–145.

[3] M. C. Gaudel, “Testing can be formal, too,” in Lecture Notes in

Computer Science, vol. 915. Springer-Verlag, 1995, pp. 82–96.

[4] E. J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, 1982.

[5] Y. Mao, F. Boqin, Z. Li, and L. Yao, “Automated test oracle
based on neural networks,” in Cognitive Informatics, 2006. ICCI
2006. 5th IEEE International Conference on, vol. 1, July 2006,
pp. 517–522.

[6] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle
should i use for effective gui testing?” in Proceedings of the
18th IEEE International Conference on Automated Software
Engineering., Oct. 2003, pp. 164– 173.

[7] G. Durrieu, H. Waeselynck, and V. Wiels, “Leto - a lutre-based
test or-acle for airbus critical systems,” Formal Methods for
Industrial Critical Systems: 13th International Workshop,
FMICS 2008, 2008.

[8] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-
testable programs,” in ACM ’81: Proceedings of the ACM ’81
conference. New York, NY, USA: ACM, 1981, pp. 254–257.

[9] D. Kim-Park, C. de la Riva, and J. Tuya, “A partial test oracle
for xml query testing,” in Testing: Academic and Industrial
Conference - Practice and Research Techniques, 2009. TAIC
PART ’09., sept. 2009, pp. 13 –20.

[10] A. Pasala, S. Rao, A. Gupta, and S. Gunturu, “On the validation
of api execution-sequence to assess the correctness of
application upon cots upgrades deployment,” in ICCBSS ’07:
Sixth International IEEE Con-ference o Commercial-off-the-
Shelf (COTS)-Based Software Systems., march 2007, pp. 225–
232.

[11] R. Shukla, D. Carrington, and P. Strooper, “A passive test oracle
using a component’s api,” in Software Engineering Conference,
2005. APSEC ’05. 12th Asia-Pacific, Dec. 2005, pp. 7

[12] P. A. Nardi and M. E. Delamaro, “Test oracles associated with
dynamical system models,” Universidade de So Paulo/So Carlos
- ICMC, Tech. Rep., 2011.

[13] R. A. Oliveira, U. Kanewala, and P. A. Nardi, “Chapter three -
automated test oracles: State of the art, taxonomies, and trends,”
ser. Advances in Computers, A. Memon, Ed. Elsevier, 2014,
vol. 95, pp. 113 – 199. [Online]. Available:
http://www.sciencedirect.com/science/
article/pii/B9780128001608000036

[14] S. Baharom and Z. Shukur, “Utilizing an abstraction relation
document in grey-box testing approach,” in ICEEI ’09:
International Conference on Electrical Engineering and
Informatics., vol. 01, Aug. 2009, pp. 304–308.

[15] L. Baresi and M. Young, “Test oracles,” University of Oregon,
Dept. of Computer and Information Science, Eugene, Oregon,
U.S.A., Tech-nical Report CIS-TR-01-02, August 2001,
http://www.cs.uoregon.edu/ michal/pubs/oracles.html.

[16] J. Hakansson, B. Jonsson, and O. Lundqvist, “Generating online
test oracles from temporal logic specifications,” International
Journal on Software Tools for Technology Transfer (STTT),
vol. 4, no. 4, pp. 456–471, Aug. 2003. [Online]. Available:
http://dx.doi.org/10.1007/ s10009-003-0107-8

[17] L. Lazic´ and D. Velaseviˇc, ́ “Applying simulation and design
of experiments to the embedded software testing process:
Research articles,” Softw. Test. Verif. Reliab., vol. 14, no. 4, pp.

57

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

257–282, Dec. 2004. [Online]. Available:
http://dx.doi.org/10.1002/stvr.v14:4

[18] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N.
Tillmann, and L. Nachmanson, “Model-based testing of object-
oriented reactive systems with spec explorer,” in Formal
Methods and Testing, ser. Lecture Notes in Computer Science,
R. Hierons, J. Bowen, and M. Harman, Eds. Springer Berlin /
Heidelberg, 2008, vol. 4949, pp. 39–76.

[19] J. Andrews and Y. Zhang, “General test result checking with log
file analysis,” IEEE Transactions on Software Engineering, vol.
29, no. 7, pp. 634–648, July 2003.

[20] D. Tu, R. Chen, Z. Du, and Y. Liu, “A method of log file
analysis for test oracle,” in International Conference on Scalable
Computing and Communications; Eighth International
Conference on Embedded Computing. SCALCOM-
EMBEDDEDCOM’09., Sept. 2009, pp. 351– 354.

[21] J. Guttag, “Abstract data types and the development of data
structures,” Commun. ACM, vol. 20, no. 6, pp. 396–404, 1977.

[22] D. Peters and D. L. Parnas, “Generating a test oracle from
program documentation: work in progress,” in ISSTA ’94:
Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis. New York, NY,
USA: ACM, 1994, pp. 58–65.

[23] J. Bieman and H. Yin, “Designing for software testability using
auto-mated oracles,” in Test Conference, 1992. Proceedings.,
International, Sep 1992, pp. 900–.

[24] Y. Cheon and C. Avila, “Automating java program testing using
ocl and aspectj,” in Seventh International Conference on
Information Technol-ogy: New Generations (ITNG)., april
2010, pp. 1020 –1025.

[25] B. Demuth and C. Wilke, “Model and object verification by
using dresden ocl,” in Russian-German Workshop ¨Innovation
Information Technologies: Theory & Practice¨. Ufa, Russia,
July 2009, pp. 1020 – 1025.

[26] P. A. Nardi, “On test oracles for simulink-like models,” Ph.D.
dissertation, Instituto de Ciências Matemáticas e de
Computação, São Carlos, Brasil, 2013.

[27] C. Ghezzi, D. Mandrioli, and A. Morzenti, “Trio: A logic
language for executable specifications of real-time systems,” J.
Syst. Softw., vol. 12, May 1990.

[28] X. Wang, Zhi-Chang, and Q. S. Li, “An optimized method for
automatic test oracle generation from real-time specification,” in
ICECCS 2005: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems.,
June 2005, pp. 440–449.

[29] J.-C. Lin and I. Ho, “A new perspective on formal testing
method for real-time software,” in Euromicro Conference, 2000.
Proceedings of the 26th, vol. 2, 2000, pp. 270–276 vol.2.

[30] J. Bouchet, L. Madani, L. Nigay, C. Oriat, and I. Parissis,
“Formal testing of multimodal interactive systems,” Engineering
Interactive Systems: EIS 2007 Joint Working Conferences,
EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain,
March 22-24, 2007. Selected Papers, pp. 36– 52, 2008.

[31] C. Murphy, “Using runtime testing to detect defects in
applications with-out test oracles,” in FSEDS ’08: Proceedings
of the 2008 Foundations of Software Engineering Doctoral

Symposium. New York, NY, USA: ACM, 2008, pp. 21–24.

[32] T. Chen, F.-C. Kuo, T. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Software Technology and Engineering
Practice, 2003. Eleventh Annual International Workshop on,
Sept. 2003, pp. 94–100.

[33] J. Ding, T. Wu, J. Lu, and X.-H. Hu, “Self-checked
metamorphic testing of an image processing program,” in Fourth
International Conference on Secure Software Integration and
Reliability Improvement (SSIRI)., June 2010, pp. 190 –197.

[34] J. Mayer and R. Guderlei, “An empirical study on the selection
of good metamorphic relations,” in Computer Software and
Applications Conference, 2006. COMPSAC ’06. 30th Annual
International, vol. 1, Sept. 2006, pp. 475–484.

[35] Z.-Y. Zhang, W. Chan, T. Tse, and P. Hu, “Experimental study
to compare the use of metamorphic testing and assertion
checking,” Ruan Jian Xue Bao/Journal of Software, vol. 20, no.
10, pp. 2637–2654, 2009, cited By (since 1996) 0.

[36] W. K. Chan, M. Y. Cheng, S. C. Cheung, and T. H. Tse,
“Automatic goal-oriented classification of failure behaviors for
testing xml-based multimedia software applications: an
experimental case study,” J. Syst. Softw., vol. 79, no. 5, pp.
602–612, 2006.

[37] C. Murphy, K. Shen, and G. Kaiser, “Using jml runtime
assertion checking to automate metamorphic testing in
applications without test oracles,” in ICST ’09: International
Conference on Software Testing Verification and Validation.,
April 2009, pp. 436–445.

[38] S. Shahamiri, W. Wan Kadir, and S. Ibrahim, “A single-network
ann-based oracle to verify logical software modules,” in 2nd
International Conference on Software Technology and
Engineering (ICSTE)., vol. 2, oct 2010, pp. V2–272 –V2–276.

[39] H. Jin, Y. Wang, N.-W. Chen, Z.-J. Gou, and S. Wang,
“Artificial neural network for automatic test oracles generation,”
in Computer Science and Software Engineering, 2008
International Conference on, vol. 2, Dec. 2008, pp. 727–730.

[40] K. K. Aggarwal, Y. Singh, A. Kaur, and O. P. Sangwan, “A
neural net based approach to test oracle,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 3, pp. 1–6, 2004.

[41] M. Vanmali, M. Last, and A. Kandel, “Using a neural network
in the software testing process,” International Journal of
Intelligent Systems, vol. 17, no. 1, pp. 45–62, 2002, cited By
(since 1996) 8.

[42] F. Wang, L.-W. Yao, and J.-H. Wu, “Intelligent test oracle
construction for reactive systems without explicit
specifications,” in Dependable, Au-tonomic and Secure
Computing (DASC), 2011 IEEE Ninth International Conference
on, dec. 2011, pp. 89 –96.

[43] Y. Lu and M. Ye, “Oracle model based on rbf neural networks
for automated software testing,” Information Technology
Journal, vol. 6, no. 3, pp. 469–474, 2007, cited By (since 1996)
1.

[44] T. Shimeall and N. Leveson, “An empirical comparison of
software fault tolerance and fault elimination,” in Software
Testing, Verification, and Analysis, 1988., Proceedings of the
Second Workshop on, Jul 1988, pp. 180–187.

257–282, Dec. 2004. [Online]. Available:
http://dx.doi.org/10.1002/stvr.v14:4

[18] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N.
Tillmann, and L. Nachmanson, “Model-based testing of object-
oriented reactive systems with spec explorer,” in Formal
Methods and Testing, ser. Lecture Notes in Computer Science,
R. Hierons, J. Bowen, and M. Harman, Eds. Springer Berlin /
Heidelberg, 2008, vol. 4949, pp. 39–76.

[19] J. Andrews and Y. Zhang, “General test result checking with log
file analysis,” IEEE Transactions on Software Engineering, vol.
29, no. 7, pp. 634–648, July 2003.

[20] D. Tu, R. Chen, Z. Du, and Y. Liu, “A method of log file
analysis for test oracle,” in International Conference on Scalable
Computing and Communications; Eighth International
Conference on Embedded Computing. SCALCOM-
EMBEDDEDCOM’09., Sept. 2009, pp. 351– 354.

[21] J. Guttag, “Abstract data types and the development of data
structures,” Commun. ACM, vol. 20, no. 6, pp. 396–404, 1977.

[22] D. Peters and D. L. Parnas, “Generating a test oracle from
program documentation: work in progress,” in ISSTA ’94:
Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis. New York, NY,
USA: ACM, 1994, pp. 58–65.

[23] J. Bieman and H. Yin, “Designing for software testability using
auto-mated oracles,” in Test Conference, 1992. Proceedings.,
International, Sep 1992, pp. 900–.

[24] Y. Cheon and C. Avila, “Automating java program testing using
ocl and aspectj,” in Seventh International Conference on
Information Technol-ogy: New Generations (ITNG)., april
2010, pp. 1020 –1025.

[25] B. Demuth and C. Wilke, “Model and object verification by
using dresden ocl,” in Russian-German Workshop ¨Innovation
Information Technologies: Theory & Practice¨. Ufa, Russia,
July 2009, pp. 1020 – 1025.

[26] P. A. Nardi, “On test oracles for simulink-like models,” Ph.D.
dissertation, Instituto de Ciências Matemáticas e de
Computação, São Carlos, Brasil, 2013.

[27] C. Ghezzi, D. Mandrioli, and A. Morzenti, “Trio: A logic
language for executable specifications of real-time systems,” J.
Syst. Softw., vol. 12, May 1990.

[28] X. Wang, Zhi-Chang, and Q. S. Li, “An optimized method for
automatic test oracle generation from real-time specification,” in
ICECCS 2005: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems.,
June 2005, pp. 440–449.

[29] J.-C. Lin and I. Ho, “A new perspective on formal testing
method for real-time software,” in Euromicro Conference, 2000.
Proceedings of the 26th, vol. 2, 2000, pp. 270–276 vol.2.

[30] J. Bouchet, L. Madani, L. Nigay, C. Oriat, and I. Parissis,
“Formal testing of multimodal interactive systems,” Engineering
Interactive Systems: EIS 2007 Joint Working Conferences,
EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain,
March 22-24, 2007. Selected Papers, pp. 36– 52, 2008.

[31] C. Murphy, “Using runtime testing to detect defects in
applications with-out test oracles,” in FSEDS ’08: Proceedings
of the 2008 Foundations of Software Engineering Doctoral

Symposium. New York, NY, USA: ACM, 2008, pp. 21–24.

[32] T. Chen, F.-C. Kuo, T. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Software Technology and Engineering
Practice, 2003. Eleventh Annual International Workshop on,
Sept. 2003, pp. 94–100.

[33] J. Ding, T. Wu, J. Lu, and X.-H. Hu, “Self-checked
metamorphic testing of an image processing program,” in Fourth
International Conference on Secure Software Integration and
Reliability Improvement (SSIRI)., June 2010, pp. 190 –197.

[34] J. Mayer and R. Guderlei, “An empirical study on the selection
of good metamorphic relations,” in Computer Software and
Applications Conference, 2006. COMPSAC ’06. 30th Annual
International, vol. 1, Sept. 2006, pp. 475–484.

[35] Z.-Y. Zhang, W. Chan, T. Tse, and P. Hu, “Experimental study
to compare the use of metamorphic testing and assertion
checking,” Ruan Jian Xue Bao/Journal of Software, vol. 20, no.
10, pp. 2637–2654, 2009, cited By (since 1996) 0.

[36] W. K. Chan, M. Y. Cheng, S. C. Cheung, and T. H. Tse,
“Automatic goal-oriented classification of failure behaviors for
testing xml-based multimedia software applications: an
experimental case study,” J. Syst. Softw., vol. 79, no. 5, pp.
602–612, 2006.

[37] C. Murphy, K. Shen, and G. Kaiser, “Using jml runtime
assertion checking to automate metamorphic testing in
applications without test oracles,” in ICST ’09: International
Conference on Software Testing Verification and Validation.,
April 2009, pp. 436–445.

[38] S. Shahamiri, W. Wan Kadir, and S. Ibrahim, “A single-network
ann-based oracle to verify logical software modules,” in 2nd
International Conference on Software Technology and
Engineering (ICSTE)., vol. 2, oct 2010, pp. V2–272 –V2–276.

[39] H. Jin, Y. Wang, N.-W. Chen, Z.-J. Gou, and S. Wang,
“Artificial neural network for automatic test oracles generation,”
in Computer Science and Software Engineering, 2008
International Conference on, vol. 2, Dec. 2008, pp. 727–730.

[40] K. K. Aggarwal, Y. Singh, A. Kaur, and O. P. Sangwan, “A
neural net based approach to test oracle,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 3, pp. 1–6, 2004.

[41] M. Vanmali, M. Last, and A. Kandel, “Using a neural network
in the software testing process,” International Journal of
Intelligent Systems, vol. 17, no. 1, pp. 45–62, 2002, cited By
(since 1996) 8.

[42] F. Wang, L.-W. Yao, and J.-H. Wu, “Intelligent test oracle
construction for reactive systems without explicit
specifications,” in Dependable, Au-tonomic and Secure
Computing (DASC), 2011 IEEE Ninth International Conference
on, dec. 2011, pp. 89 –96.

[43] Y. Lu and M. Ye, “Oracle model based on rbf neural networks
for automated software testing,” Information Technology
Journal, vol. 6, no. 3, pp. 469–474, 2007, cited By (since 1996)
1.

[44] T. Shimeall and N. Leveson, “An empirical comparison of
software fault tolerance and fault elimination,” in Software
Testing, Verification, and Analysis, 1988., Proceedings of the
Second Workshop on, Jul 1988, pp. 180–187.

58

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

JADI - Marília - v.1 - 2015

[45] L. Manolache and D. Kourie, “Software testing using model
programs”, Software - Practice and Experience, vol. 31, no. 13,
pp. 1211–1236, 2001, cited By (since 1996) 2.

[46] O. Hummel and C. Atkinson, “Automated harvesting of test
oracles for reliability testing,” in Computer Software and
Applications Conference, 2005. COMPSAC 2005. 29th Annual
International, vol. 2, July 2005. Pp. 296-202. Vol. 1.

[47] K. Taneja, N. Li, M. R. Marri, T. Xie, and N. Tillmann, “Mitv:
multiple-implementation testing of user-input validators for web
applications,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, ser. ASE ’10.
New York, NY, USA: ACM, 2010.

[48] W.-T. Tsai, Y. Chen, D. Zhang, and H. Huang, “Voting multi-
dimensional data with deviations for web services under group
testing,” in 25th IEEE International Conference on Distributed
Computing Sys-tems Workshops., June 2005, pp. 65–71.

[49] W.-T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and X. Wei,
“Adaptive testing, oracle generation, and test case ranking for
web services,” in Computer Software and Applications
Conference, 2005. COMPSAC 2005. 29th Annual International,
vol. 1, July 2005, pp. 101–106 Vol. 2.

[50] P. Nardi, M. Delamaro, and L. Baresi, “Specifying automated
oracles for simulink models,” in Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2013 IEEE
19th International Conference on, Aug 2013, pp. 330–333.

[51] D. Peters and D. Parnas, “Using test oracles generated from
program documentation,” IEEE Transactions on Software
Engineering, vol. 24, no. 3, pp. 161–173, Mar 1998.

[52] D. S. Kim-Park, C. de la Riva, and J. Tuya, “An automated test
oracle for xml processing programs,” in Proceedings of the First
International Workshop on Software Test Output Validation,
ser. STOV ’10. New York, NY, USA: ACM, 2010, pp. 5–12.

[45] L. Manolache and D. Kourie, “Software testing using model
programs”, Software - Practice and Experience, vol. 31, no. 13,
pp. 1211–1236, 2001, cited By (since 1996) 2.

[46] O. Hummel and C. Atkinson, “Automated harvesting of test
oracles for reliability testing,” in Computer Software and
Applications Conference, 2005. COMPSAC 2005. 29th Annual
International, vol. 2, July 2005. Pp. 296-202. Vol. 1.

[47] K. Taneja, N. Li, M. R. Marri, T. Xie, and N. Tillmann, “Mitv:
multiple-implementation testing of user-input validators for web
applications,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, ser. ASE ’10.
New York, NY, USA: ACM, 2010.

[48] W.-T. Tsai, Y. Chen, D. Zhang, and H. Huang, “Voting multi-
dimensional data with deviations for web services under group
testing,” in 25th IEEE International Conference on Distributed
Computing Sys-tems Workshops., June 2005, pp. 65–71.

[49] W.-T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and X. Wei,
“Adaptive testing, oracle generation, and test case ranking for
web services,” in Computer Software and Applications
Conference, 2005. COMPSAC 2005. 29th Annual International,
vol. 1, July 2005, pp. 101–106 Vol. 2.

[50] P. Nardi, M. Delamaro, and L. Baresi, “Specifying automated
oracles for simulink models,” in Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2013 IEEE
19th International Conference on, Aug 2013, pp. 330–333.

[51] D. Peters and D. Parnas, “Using test oracles generated from
program documentation,” IEEE Transactions on Software
Engineering, vol. 24, no. 3, pp. 161–173, Mar 1998.

[52] D. S. Kim-Park, C. de la Riva, and J. Tuya, “An automated test
oracle for xml processing programs,” in Proceedings of the First
International Workshop on Software Test Output Validation,
ser. STOV ’10. New York, NY, USA: ACM, 2010, pp. 5–12.

59

A Survey on Test Oracles - Paulo A. Nardi, Eduardo
F. Damasceno (p. 50 a 59)

