
How reduce the View Selection Problem
through the CoDe Modeling

Abstract—Big Data visualization is not an easy task due to the sheer amount of information contained in data warehouses. Then the 
accuracy on data relationships in a representation becomes one of the most crucial aspects to perform business knowledge discovery. 
A tool that allows to model and visualize information relationships between data is CoDe, which by processing several queries on a 
data-mart, generates a visualization of such data. However on a large data warehouse, the computation of these queries increases 
the response time by the query complexity. A common approach to speed up data warehousing is precompute a set of materialized 
views, store in the warehouse and use them to compute the workload queries. The goal and the objectives of this paper are to present 
a new process exploiting the CoDe modeling through determining the minimal number of required OLAP queries and to mitigate the 
problem of view selection, i.e., select the optimal set of materialized views. In particular, the proposed process determines the minimal 
number of required OLAP queries, creates an ad hoc lattice structure to represent them, and selects on such structure the views to 
be materialized taking into account an heuristic based on the processing time cost and the view storage space. The results of an 
experiment on a real data warehouse show an improvement in the range of 36-98% with respect the approach that does not consider 
materialized views, and 7% wrt. an approach that exploits them. Moreover, we have shown how the results are affected by the lattice 
structure.

Index Terms—View Selection, Conceptual Modeling, OLAP Optimization.

F
1 INTRODUCTION

IN the last years the use of decision support system
based on data warehouse(DW) is widely increasing

in different domains such as marketing, business re-
search, demographic analysis, security and medical field.
Whereby is necessary to analyze and solve several prob-
lems related data OLAP analysis (OnLine Analytical
Processing) [1], such as big-data, performance, and data
visualization. Since the large size of a DW and the OLAP
queries complexity have considerably grown the query
processing cost has a critical effect on the performance
and the productivity of a decision support system. More-
over, performing queries frequently is expensive, pro-
ducing wasted effort and making the data warehousing
extremely slow.

A common approach to speed up data warehousing
is precalculate materialized views computed on frequent
data usage, and store them in the DW. This allows that
the overall workload queries can be calculated starting
from these views [2], [3], [4]. However this approach
requires a set up phase that increases the costs, then
there is the needs to use it until the most frequently
OLAP queries are discovered (further increasing the set
up time costs). To mitigate these issues, several greedy
based algorithms have been proposed in the literature
(e.g., [5], [6], [7], [8]). For example, Agrawal et al. [5],
use a multidimensional lattice framework to determine
a good set of views to materialize. However, the optimal

solution requires to determine all the possible depen-
dencies on the lattice. This operation is time-consuming,
which raises when the size of the dataset increases, and
is not applicable in practice. To mitigate this aspect, we
only need to know a priori data and relationships among
them to obtain the relevant information to precalculate.
This information can be provided directly by the user
through a high-level model defined by CoDe [9], [10] (see
Fig. 1(a)).

CoDe is a visual language that allows to conceptually
organize the visualization of reports. It models graphical
representations involving more than one type of graph
that have to be composed and aggregated through con-
ceptual links showing relationships among data. CoDe
adopts an hybrid modeling process combining two main
methodologies: user-driven and data-driven. The first one
aims to create a model according to the user knowledge,
requirements and analysis needs, whilst the latter has in
charge to concretize data and their relationships in the
model through OLAP queries.

Different approaches have been presented to perform
data visualization [11], [12]. They allows to view the
data with different types of visual representations and
to switch from a display to another, but they maintain
the visualizations separated and not connected to each
other.

In this paper, we present an optimization approach
that exploits the CoDe modeling to mitigate the view
selection problem (VSP). The proposed approach selects
the minimal number of required OLAP queries, com-
pacts them, and creates a lattice structure avoiding the
explosion of the number of nodes. Moreover, heuristics
and a minimum spanning tree (MST) algorithm have
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Fig. 2: Dimensional Fact Model of the Sales data-mart.

been adopted to select on the lattice the views to be
materialized taking into account the processing cost and
the view storage space. The proposed approach has been
tested on the Foodmart DW [13] which maintains infor-
mation about a franchising of big supermarkets located
in the United States, Mexico and Canada. In particular,
the data-mart Sales has been selected to analyze the sales
of these stores, customers and products.

This paper extends our previous work published in
[14] by:
• detailing the CoDe methodology and the visual

notation;
• providing more details on the proposed process;
• enriching the related work discussion and compar-

ison.
• evaluating the approach on another case study and

on the whole CoDe model.
The paper is organized as follow. Section 2 outlines

related works. Section 3 describes the optimization ap-
proach to select the materialized views and Section 4
discusses the results of a case study applied on two
different CoDe models. Final remarks conclude the paper
in Section 5.

2 RELATED WORK

The VSP plays a central role in the design and query
of a DW [1]. Many research was written to address
this problem such as deterministic, genetics, and hybrid
algorithms.

Harinarayan et al. [6] presented a greedy algorithm for
the selection of materialized views using a constraint
on the maximum number of views to materialize and
a framework lattice to express dependencies between
such views. Using the lattice structure some queries
can be answered from the result of others optimizing
the query processing costs. However, they did not take
into account the storage space constraints. Our first

goal was to develop a framework lattice more scalable
than theirs to select the views taking into account this
information and making our solution closer similar to
the real problem.

Shukla et al. [7] addressed the VSP by exploiting a
greedy algorithm which picks the views by focusing on
a benefit metric, such metric is based on the probability
which each view being queried. However, this solution
is not suitable because it needs to know a priori the
frequency with which the view is expected to be queried.

Yang et al. [15] proposed a heuristic algorithm which
utilizes a Multiple View Processing Plan to obtain an
optimal materialized view selection. They use a tree
structure which every node is a potential candidate
to the materialization. If a node is considered a good
candidate, the savings will calculate taking into account
the materialization costs and subtracting the cost mainte-
nance. If the result is a positive value, the node is added
to the tree, otherwise it is deleted with all its descendants
from the candidate set. In this way the best combination
of performance and maintenance costs can be achieved.
However, this algorithm did not consider the storage
space constraints.

Many genetic solutions were proposed, such as [16],
where the views are chosen in terms of reduction on
the processing costs and maintenance costs. However,
for the random characteristics, this algorithms do not
give an optimal solution. Another approach is repre-
sented by the hybrid algorithms. Zhang et al. [8] applied
their hybrid approach combining greedy and genetic
algorithms to solve three types of problems. The first
one addressed the optimization of queries, the second
concerned the choice of the best execution plan for
each query and the third was about the views selection
problem. However, such algorithms are characterized on
an high computational complexity.

Differently, other approaches exploit clustering algo-
rithms. In particular, they define a similarity function
which makes sure that similar objects belongs to the
same group.

Gong et al. [17] defined an algorithm that firstly
clusters materialized views, and then dynamically ad-
justs them. They propose a similarity function that is a
weighted sum between the query processing cost and
the maintenance cost of view. Their experimental results
show that the algorithm not only improves the overall
query response performance, but also reduces the com-
putational cost which will be spent during the update
of the materialized view. Similarly, Chaudhari et al. [18]
defined an algorithm that clusters materialized views
in many steps. The first step removes the materialized
views with both low access frequency and high storage
space for the materialization of new views.The second
step selects queries based on their weight age in the
given query set and storage space. The queries which
have high access frequency are selected for the view se-
lection problem. Then third step assigns an integer value
to each query adopting some predefined criteria. The
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(a)

(b)

Fig. 1: CoDe model for the data-mart Sales (a), and its graphical representation (b).

four step calculates for each view the query processing
and the maintenance costs. Finally, the total cost of the
materialization is computed by summing the query pro-
cessing and maintenance costs. Such algorithms achieve
good performance in the optimization of the query cost,
but they require to manually select a threshold value.

3 CODE MODELING AND VSP OPTIMIZATION

The optimization approach is composed of three phases:
A. Code Modeling. It produces as output a model de-

scribing information items and their relationships.
This phase is performed by the company manager
that is the expert of the specific domain.
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B. OLAP Operation Pattern Definition. It is used to de-
fine the sequences of operations needed to extract
all the information.

C. OLAP Operation Optimization. In order to speed-
up the data extraction, this phase selects the set
of views to be materialized and maps the OLAP
operation patterns into OLAP queries, which are
used to extract information from the data-mart.

The extracted information is used to display the final
report taking into account data series and their relation-
ships [19] according to the CoDe model.

The Dimensional Fact Model of the Sales data-mart
is shows in Fig. 2. It consists of a fact schema SALES
with measures Sales, Cost, and Profit, and dimensions
Customers, Store, Product and Time. The maximum level
of aggregation (named ALLdw) is represented by ALL
for Products, ALL for Stores ed ALL for Customers,
otherwise in the absence of an ALL level, as for the
Time dimension, the members at the top are all those
contained in the Year level.

3.1 Code Modeling
The CoDe Modeling phase produces a CoDe model (see
Fig. 1(a)), which generates the report shown in Fig.
1(b). Such model is composed by Terms, Functions and
Relations [9].

A Term is an array of components, is identified by a
name and has associated data extracted from data-mart.
In Fig. 3, components in the square brackets represent
members or dimensional attributes, whilst the name can
specify measures and/or hierarchies. In particular, the
name All Sales indicates the measure Sales with the
maximum level of aggregation, and the three compo-
nents denotes the members belonging to the dimensional
attribute Product Family. Practically, it corresponds to the
total sales for the three members.

A Function is adopted to link terms provided as in-
put by defining constraints and correspondences among
their components. The function AGGREGATION is
used to group several terms having the same compo-
nents into a single term preserving the original data
values for each component. The output term includes
both the involved terms and the AGGR label. At the
right side of the Fig. 1a we find such function (with label
ProductFamily Sales 1997) that allows to group the sales
of the drink, food and non-consumable components for
the four quarters in the year 1997.

The function SUMi has two input terms. As a pre-
condition the value of i-th component in the second
term is the sum of the data series in the first one. In
the example three function SUM1, SUM2 and SUM3

associate the sum of all the values of data series drink,
food and non-consumable to the term All Sales.

Fig. 3: Definition of the term All Sales.

OLAP operation pattern for the CoDe Term
pivot(h ∪ v;m)∗[rollup(h;m)|drilldown(h;m)]∗

dice(h;m)[rollup(v;m)|drilldown(v;m)]∗slice(v;m)

Fig. 4: The operation pattern for the CoDe Term.

The function NESTi has a symmetric definition with
respect to the SUMi function. It applies to two input
terms where one component in a report has a value
aggregated from data in the other one. At the bottom
side of the Fig. 1a is represented such function, in this
example the term All Sales is given in input to the
functions NEST1, NEST2 and NEST3 in order to detail
the sales of its three components drinks, food and non-
consumable distinct by Product Category. The details are
represented by the Drink Sales, Food Sales and Non-
Consumable Sales terms. In addition, to each nest func-
tion is applied ICON that adds an icon in the gen-
erated report. The three terms Drink Sales, Food Sales
and Non-Consumable Sales on the right side of Fig. 1a
represent the data series (distinct by product family)
containing the values of total incomes made in the stores
of three different American states, such as California
(CA), Oregon (OR) and Washington (WA).

The UNION function is the same as the aggregation
function, but different sets of components are allowed in
the input terms. The representation of the output CoDe
term is denoted by the UNION label. In the example
in Fig. 1a, the three reports Drink Sales, Food Sales and
Non-Consumable Sales has been aggregated in the term
StoreState Sales by using this function.

The function SHAREi shares all the n components of
the input term on the i-th position of the other n output
ones, respectively. In the example in Fig. 1a this function
is defined between All Sales and StoreState Sales.

A Relation is a logic connection existing between two
terms. An example is shown in the top right part of Fig.
1a where the term All Sales(CA, OR, WA) is related with
the term StoreState Sales through a thick arrow. The first
term represents the report relative to the total receipts of
the sales made on any family of products from the shops
located in the CA, OR and WA states. The output is a
graphical representation of the input terms augmented
with links among correspondences of each couple of
components. Moreover, ICON and COLOR are applied
on All Sales(CA, OR, WA). In particular, the ICON(USA)
displays in the final visualization the total incomes of
the sales on the United States geographical map, and
COLOR(CA, OR, WA) highlights the three states with
different colours on such map.

The two terms All Profit and All Cost represent profits
and costs respect with the total sales for each prod-
uct family. These data series are aggregated with the
AGGREGATION function, which groups them for each
product family. The recursive relation applied on the
aggregation, adds to the final visualization the total
incomes related to the sales for the product families
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drink, food and non-consumable.
The function EQUALi has two input terms

T1[D1, ..., Di, ..., Dh] and T2[C1, ..., Cj , ..., Cn], where
the i-th component of term T1 is equal and has the same
associated value of the j-th component of T2. At the
top side of the Fig. 1a the three functions EQUAL1,1,
EQUAL2,2, and EQUAL3,3 and the AGGREGATION
named Product Cost Profit, define an identity between
the value of the i-th component of All Sales and the i-th
component given in output by the recursive Relation
applied on the AGGREGATION function (∀i = 1, 2, 3).

Finally, the bidirectional relation between the two
terms All Sales produces two different visual represen-
tations and one-to-one graphical links among the their
components. Further details on the CoDe visual lan-
guage syntax are available in [9].

The data series are extracted from the data-mart
by applying a combination of selection and/or ag-
gregation dimensional operators, i.e., the OLAP op-
erations that allow multidimensional data analysis:
slice/dice/pivot/rollup/drilldown [20]. Thus, all the syntax
constructs of CoDe are expressed as a combination of
them, named Operation Patterns [9].

The operation pattern to extract information for any
CoDe Term is shown in the first row of Table 1, where
each label represents a single OLAP operation, whilst
the symbol h (resp. v) in the parentheses denotes the
horizontal (resp. vertical) axis on which the operation
is performed (the multiplicity is expressed by the ∗
symbol). The parameter m after the symbol ; repre-
sents the set of members (separated by the comma) on
which the OLAP operation is performed. In particular,
pivot(h∪v;m) is used to rotate the dimensional members
m on any single dimension, rollup(h;m)/rollup(v;m) or
drilldown(h;m)/drilldown(v;m) are performed on the
horizontal/vertical axis in order to decrease or increase
the details of the set m, respectively, dice(h;m) is per-
formed on the horizontal axis to select a subset of
dimensional members m and to exclude the others (if
present), and slice(v;m) is executed on the vertical axis
to reduce the number of selected dimensional members
to the ones in m.

3.2 OLAP Operation Pattern Definition

This phase takes in input the CoDe model, computes
the sequence of operation patterns and then provides as
output a lattice representing the set of candidate views
to materialize in the DW. Such phase is composed of
three steps (see Fig. 5).
- Eligible patterns generation. Starting from the CoDe
model, this phase selects the attributes in the DFM on
which a finite sequence of OLAP operations has to be
executed (named eligible pattern). The eligible pattern is
determined taking into account the OLAP operation pat-
terns for each term and for every term derived from the
functions and/or relations in the CoDe model. Two ex-
amples of eligible pattern generation for the CoDe Term

Fig. 5: The OLAP Operation Pattern Definition phase.

and for the SUMi function are provided in Algorithm 1
and Algorithm 2, respectively. The Algorithm 1 generates
the eligible pattern for the CoDe Term. In particular,
it computes the set of attributes to perform the OLAP
operation by exploiting the input/output attributes of
a term (lines 2-9), while at line 10 the eligible pattern
is created by following the OLAP pattern defined for
that term. The symbol ! denotes that the OLAP operation
produces the same result independently from the order
of dimensional members on which it is applied, while
the symbol ∪ denotes the operations that can be executed
in any order. Finally, at lines 11-12 the computed dimen-
sional members and the eligible pattern are associated
to the term. Similarly, the Algorithm 2 computes the set
of attributes needed to perform the OLAP operations
by exploiting the input/output attributes of the terms
involved in the SUM function.
- Selection of one OLAP eligible pattern. The previous phase
generates a set of eligible patterns for each term, function
and relation in the CoDe model. This phase adopts the
heuristic strategy to select one eligible pattern from each
set. The selected one is the longest common prefix (LCP)
of OLAP operations also considering their permutation.
This strategy is implemented in the Algorithm 3. In
order to simplify the description of the algorithm, we
represent each OLAP operation in the eligible pattern
with a unique label. For example, let the eligible pat-
tern [pivot(h;m1,m2, ...,mn)]!slice(v;mk) and the labels
a = pivot(h;m1), b = pivot(h;m2), c = pivot(h;mn),
d = slice(v;mk), thus, the eligible pattern is represented
as the string {a, b, c}, d where the a, b, c labels can be
swapped.

The Algorithm 3 builds a prefix tree and adopts
a greedy strategy to selects the prefixes, through a
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TABLE 1: Summary of the mapping among Code syntax and OLAP operation patterns.

CoDe syntax OLAP operation pattern
CoDe Term pivot(h ∪ v)∗[rollup(h)|drilldown(h)]∗dice(h)[rollup(v)|drilldown(v)]∗slice(v)
SUMi rollup(h)∗pivot(hi ∪ v)dice(h1 . . . hi . . . hn)
NESTi slice(h1 . . . hi−1hi+1 . . . hn)drilldown(hi)

∗

EQUALij slice(h1 . . . hi−1hi+1 . . . hn)pivot(hj ∪ v)dice(h1 . . . hj . . . hm)
SHAREi ∀j = 1, . . . , n slice(h1 . . . hj−1hj+1 . . . hn)pivot(hi ∪ v)]dice(h1 . . . hi . . . hm)
AGGREGATION / UNION pivot(h ∪ v)∗[rollup(h)|drilldown(h)]∗dice(h) [rollup(v)|drilldown(v)]∗slice(v)
RELATION ∀j = 1, . . . , n slice(h1 . . . hj−1hj+1 . . . hn) drilldown(hi)

∗

To ease the readability the OLAP operation patterns, we have omitted the set of members on which the OLAP operations is performed.

breadth-first search on the maximum number of strings
exchangeable that share a prefix, and a depth-search
on the maximum length of the common prefixes. The
LCP algorithm is used by Algorithm 4 to determine
one of OLAP eligible patterns, split it into a sequence
of OLAP operations, associate a unique label to each
single OLAP operation, and finally select the longest

Algorithm 1 Eligible pattern for the CoDe Term.
Require: The CoDe model
1. for all term in the CoDe model do
2. cols1={set of measures: Sales, Cost, Profit}
3. rows1={set of dimensional members that belongs to ALLdw}
4. cols2={set of dimensional members used to compute the

column attributes of the term (i.e., components)}
5. rows2={set of measures/hierarchies used to compute the

row attributes of the term}
6. pivotingv/h={set of dimensional members of cols1/rows1

present in rows2/cols2 to compute the vertical/horizontal

pivoting}
7. slicingv={set of dimensional members of rows1 not present

in rows2 to compute the vertical slicing}
8. dicingh={set of dimensional members used to compute the

col attributes of the term}
9. drillingh/v={set of dimensional members represented by

ancestors recursively computed of the dimensional members
in cols2/rows2 present in cols1/rows1}

10. eligible = [pivot(h; pivotingh) ∪ pivot(v; pivotingv)]!
[drilldown(h; drillingh)]![dice(h; dicingh)]

[drilldown(v; drillingv)]![slice(v; slicingv)]!
11. term.rows/cols = eligible.rows/cols
12. term.eligible pattern = eligible.olap pattern

13. end for

Algorithm 2 Eligible pattern for the SUMi function.
Require: The SUMi function between the T1 and T2 terms in the

CoDe model
1. cols1/rows1={set of dimensional members used to compute

T1.cols/T1.rows}
2. cols2/rows2={set of dimensional members used to compute

T2.cols/T1.rows}
3. rollingh={set of dimensional members of cols1 to be aggregated

to obtain the set of attributes of cols2}
4. pivotingi={the i-th attribute of rows2}
5. pivotingv={set of dimensional members of rows1}
6. dicingh={set of dimensional members of cols2}
7. eligible = [rolling(h; rollingh)]!

[pivoting(h; pivotingi) ∪ pivoting(v; pivotingv)]!

[dicing(h; dicingh)]
8. SUMi.eligible pattern = eligible.olap pattern

Algorithm 3 LCP(S, root).
Require: S = {s1, s2, . . . , sn}, root
1. for all si in S with 0 characters do
2. addLabelNode(root, ”si”)
3. remove si from S

4. end for
5. if |S| == 1 then
6. addLabelNode(root, ”s1”(s1) )
7. remove s1 from S

8. end if
9. if |S| == 0 then

10. return
11. end if
12. V = sort(unique characters(S))
13. i = 1
14. while |S| ≥ 1 do
15. c = V [i]

16. Sc = select strings in S starting with c
17. remove Sc from S
18. if |Sc| >1 then
19. node=createChild(root)
20. setLabelEdge(root, node, c)
21. else
22. node=root
23. end if
24. remove the first character c from the strings in Sc

25. LCP(Sc, node)
26. i++
27. end while
28. return

common prefix. As an example, given the sets of eligible
patterns: S1 = {a, c};S2 = {a, b, c};S3 = {a, d}, e, f ;S4 =
{a, d}, f ;S5 = {a, d}, e. The algorithm LCP generates
the prefix tree in Fig. 6, obtaining the set of unique
eligible patterns S1 = a, c;S2 = a, c, b;S3 = a, d, e, f ;S4 =
a, d, e;S5 = a, d, f .

Algorithm 4 Selection of OLAP eligible patterns.
Require: Set E of all eligible patterns
1. map each OLAP operations in E with an unique character
2. root = create a new node
3. LCP(E, root)
4. for all string si ∈ E do
5. prefix = concatenation of characters on the path from the root

to the node labeled with si
6. remove from the selected string si the characters in prefix
7. build the unique OLAP eligible pattern by concatenating

prefix with the string si
8. end for
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Fig. 6: The prefix tree.

- Creation of the lattice structure. The lattice structure is
created by using the OLAP eligible patterns. The lattice
is a directed acyclic graph and is defined as follow: i)
Each node in the lattice represents a view that has to be
computed on the DW. ii) Let u and v two views, each
edge between u and v represents an OLAP operation
that applied on u computes v. iii) There exists a partial
order � between views in the lattice: v � u if and only
if v can be computed starting from u (dependency). iv)
There is the aggregated view ”ALL” in the lattice, upon
which every view is computed. The ancestors of v is the
set {s|s � v}. Thus v is computed starting from any of
its ancestors, i.e., the views it transitively depends on,
applying the sequence of OLAP operations specified on
the edges among any s and v. To tackle the state-space
explosion problem [21], the views of the lattice structure
are merged by exploiting the common prefixes of unique
eligible patterns.

To define the processing cost of a view, we compute a
cost model by considering the processing cost of each
single OLAP operation that produces that view. This
processing cost (i.e., Pc) is a linear function applied on
the view size (i.e., Vs) and it is expressd by the formula
Pc = mo ∗ Vs + o, where mo is a multiply coefficient
depending on the OLAP operation and o is a fixed cost

Fig. 7: The OLAP Operation Optimization phase.

TABLE 2: Coefficients to compute Vs and Pc.

OLAP Operation Rowsv Colsv Coefficient mo

pivot(h) or pivot(v) rows cols 2.5 ∗ 10−3

slice(h) 1 cols

5.0 ∗ 10−3slice(v) rows 1
dice(h) rows− 1 cols
dice(v) rows cols− 1

rollup(h) rows/2 cols

10.0 ∗ 10−3rollup(v) rows cols/2
drilldown(h) 2 ∗ rows cols
drilldown(v) rows 2 ∗ cols

The coefficient o is 5 ∗ 10−3 and it is fixed for all the OLAP
operations (mo and o are expressed in secs.).

(e.g., the overhead of running a query on a negligible
DW size). These two coefficients have been empirically
determined by executing all the five OLAP operations
on different DWs. The view size Vs is computed by
multiplying the Rowsv and Colsv coefficients (i.e., the
number of rows and the columns obtained from the
OLAP operation). Table 2 summarizes the coefficients for
computing the view size and processing costs in terms
of OLAP operations.

3.3 OLAP Operation Optimization

This phase takes as input the lattice and gives as output
the set of views to be materialized. Figure 7 details the
two steps composing this phase.
- Minimum spanning tree generation. The problem of
view selection (VSP) is known to be NP-complete by
a reduction from minimum set cover [22] and it can
be formulated as follows. Given a query workload
Q = {q1, q2, . . . , qq} defined over the lattice L com-
posed of n nodes (i.e., v1, . . . , vn), the problem is to
select an appropriate set of views to materialize M =
{mv1,mv2, . . . ,mvm} (with m ≤ n) such that Q is an-
swered starting from M with the lowest processing cost
under a limited amount of resources, e.g., storage space
[23]. Since the lattice structure does not have an unique
path from the root to each node, a MST is computed
to select the paths that starting from the root node
generate the views (answering the workload query Q)
with the lowest processing costs. This is performed by
considering as weights the set of Pc required to compute
OLAP operations among each couple of directly con-
nected nodes in the lattice. Then, each node in the MST
has associated a couple of weights that represent the
view processing cost and the view size. These values are
computed as follows: i) T (root, node) is the processing
cost of all the OLAP operations from the root to node,
and is the given by: ∑

op∈path(root,node)

Pc(op) (1)

where path computes the sequence of OLAP operations
among two nodes in the MST. ii) Starting from the rows
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and columns of the view represented by the root of MST,
S(node) is computed as the product of Rowsnode and
Colsnode. These values are updated taking into account
the OLAP operations present in the path from root to
node and coefficients in Table 2.
- Heuristic and views selection. On the MST, the VSP can
be reduced to an optimization problem where we are
interested to minimize the following objective function:

min
∑
qj∈Q

T (mvr, vj) (2)

where
∑

mvi∈M
Size(mvi) ≤ S and r ∈ 1, . . . ,m

and T (mvr, vj) is the processing cost of the view vj
that answers the query qj , starting from the materialized
view mvr and S is the available total storage space. The
problem can be approached by following two steps: 1)
Calculate the processing cost and the view size for each
node in MST where M = ∅ (i.e., no materialization has
been computed); 2) Add in M the set of nodes present
in the MST that minimizes the objective function and
respects the space constraints [14].

Many algorithms has been proposed to select properly
the set M [5], [6], [16], [24], [25], [26]. Most of all focused
on the concept of a benefit metric and differ from each
others in the definition of this metric. Informally, the
benefit to materialize a view is the savings we obtain
choosing to materialize such view instead of another
one. Given an instance of the VSP problem, Shukla et al.
[7] introduce a benefit metric called Average Query Cost
(AvQC) computed as follow:

n∑
j=1

pj · T (mvj , vj) (3)

where p1, . . . , pn represent the probabilities that queries
q1, . . . , qn occur. These queries are answered by the
views v1, . . . , vn, starting from the materialized view
mv1, . . . ,mvn. This approach differs from ours because
the authors want to minimize the ratio between the
size of the query to pick up, and the probability of its
occurrence. In the case the materialized views have not
an equal probability of being queried, the user has to
assign such probabilities. However, the frequency (i.e.,
the probability) a materialized view is expected to be
queried is not always a priori known, and this frequency
may change during the DW process.

Algorithm 5 HRUT

Require: The MST, k
1. M = {root}
2. for i = 0 to k do
3. if ∃v ∈MST\M that maximizes Inv(v,M) then
4. M = M ∪ v
5. end if
6. end for
7. return M

Differently, Harinarayan at al. define in [6] two dif-
ferent benefit metrics taking into account the processing
cost and the space occupied by the materialized views.
The first one is defined as follow and is used in the
Algorithm 5.

Let v a view in the MST, for each view w � v (i.e., w
in the MST that covers v):

Inv(v,M) =
∑
w�v

I(v, w,M) (4)

where I(v, w,M) =

T (u,w)− T (v, w)
if T (u,w) > T (v, w)

0 otherwise

and u is the materialized view in M with the lowest cost
that is covered by w. Summarizing, the cost of evaluating
w by using v is compared wrt. the cost of evaluating
w by using a materialized view u. If v helps (i.e., the
cost of v is less than the cost of u), then the difference
represents part of the benefit of v in case it is selected
as a materialized view. The total benefit Inv(v,M) is the
sum over all views that cover v. The algorithm HRUT

maximizes the benefit (line 3), by adding the selected
view in the set M (line 4) until the fixed limit (i.e., k) on
the number of view to materialize is reached. At line 7
the algorithm returns the set M containing the selected
view to materialize.

The second benefit metric, is defined as follow and is
used in the Algorithm 6.

InvS(v,M) =
Inv(v,M)

Size(v)
(5)

The metric considers the view space occupied by M ,
and is calculated as the ratio between the investment
to compute v and all its descendant, and the space to
materialize it. The algorithm HRUS maximizes the total
benefit (line 3), by adding the view v in M (line 4) as
long as the upper-bound of the disk space (i.e., s) is not
been reached. The algorithm does not consider the space
occupied by the root which is always materialized. At
line 8 the algorithm returns the set M containing the
selected view to materialize.

4 CASE STUDY

In this case study, to simplify the presentation we show
the optimization process on a portion of the CoDe model

Algorithm 6 HRUS

Require: The MST, s
1. M = {root}
2. while s > 0 do
3. if ∃v ∈ MST\M that maximizes Inv(v,M) and s −

Size(v) > 0 then
4. M = M ∪ v
5. s = s− Size(v)
6. end if
7. end while
8. return M
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TABLE 3: Eligible OLAP operation patterns for the term
Drink.

1) [pivot(h; [Time].[1997],[Time].[1998])]!
2) drilldown(h; [Time].[1997])

3) dice(h; [Measures].[Sales],
[Time].[1997].[Q1], [Time].[1997].[Q2],
[Time].[1997].[Q3], [Time].[1997].[Q4])

4) drilldown(v; [Product].[All Products])

5) [slice(v; [Store].[All Stores], [Customers].[All Customers],
[Product].[All Products].[Food],
[Product].[All Products].[Not-Consumable])]!

TABLE 4: Eligible OLAP operation patterns for SUM1.

1) [rollup(h; [Time].[1997].[Q1], [Time].[1997].[Q2],
[Time].[1997].[Q3],[Time].[1997].[Q4])]!

2) [pivot(v; [Time].[1997])∪
pivot(h; [Product].[All Products].[Drink])]!

3) dice(h; [Measures].[Sales],
[Product].[All Products].[Drink],
[Product].[All Products].[Food],
[Product].[All Products].[Non-Consumable])

of Fig. 1(a), i.e., AGGR(ProductFamily Sales 1997) and
the term All Sales. In the CoDe model the terms Drink,
Food and Non-consumable representing the data series
for each product family sold in the Foodmart stores
which are respectively drinks, food products and not
edible products. These data series are referred to the
sales in four quarters (i.e., Q1, Q2, Q3, Q4) of the 1997,
and on them is applied an aggregation function (i.e.,
AGGR) that allows to group the sales of drink, food and
non-consumable for four quarters. The All Sales term
represents the cumulative data series of the total sales
made in the 1997 for each product family, and the SUM1,
SUM2, and SUM3 functions are used to map the sum of
data series Drink, Food and Non-consumable, respectively.

The first step of the OLAP Operation Pattern Definition

TABLE 5: Vocabulary table.

a = pivot(h; [Time].[1997])
b = pivot(h; [Time].[1998])
c = drilldown(h; [Time].[1997])
d = dice(h; [Measures].[Sales])
e = dice(h; [Time].[1997].[Q1])
f = dice(h; [Time].[1997].[Q2])
g = dice(h; [Time].[1997].[Q3])
h = dice(h; [Time].[1997].[Q4])
i = drilldown(v; [Product].[All Products])
j = slice(v; [Store].[All Stores])
k = slice(v; [Customers].[All Customers])
x = rollup(h; [Time].[1997].[Q4])
l = slice(v; [Product].[All Products].[Food])
m = slice(v; [Product].[All Products].[Non-Consumable])
n = slice(v; [Product].[All Products].[Drink])
o = pivot(h; [Product].[All Products])
p = drilldown(h; [Product].[All Products])
q = dice(h; [Product].[All Products].[Drink])
r = dice(h; [Product].[All Products].[Food])
s = dice(h; [Product].[All Products].[Non-Consumable])
t = slice(v; [Time].[1998])
u = rollup(h; [Time].[1997].[Q1])
v = rollup(h; [Time].[1997].[Q2])
w = rollup(h; [Time].[1997].[Q3])
y = pivot(v; [Time].[1997])
z = pivot(h; [Product].[All Products].[Food])
α = pivot(h; [Product].[All Products].[Drink])
β = pivot(h; [Product].[All Products].[Non-Consumable])

TABLE 6: Switchable strings and OLAP unique operation
patterns.

S1-Drink = {a, b} c d e f g h i {j, k, l, m} a b c d e f g h i j k l m
S2-Food = {b, a} c d e f g h i {n, m, j, k} a b c d e f g h i j k m n
S3-Non-Consumable = {b, a} c d e f g h i {j, n, k, l} a b c d e f g h i j k l n
S4-All Sales = o p d q r s {t, j, k} o p d q r s t j k
S5-AGGR = {a, b} c d e f g h i {j, k} a b c d e f g h i j k
S6-SUM1 = {u, v, w ,x} {y, α} d q r s u v w x y α d q r s
S7-SUM2 = {u, v, w, x} {y, z} d q r s u v w x y z d q r s
S8-SUM3 = {u ,v ,w ,x} {y, β} d q r s u v w x y β d q r s

phase generates the eligible patterns for the four terms
Drink, Food, Non-Consumable, All Sales, and for the func-
tions AGGR ProductFamily Sales 1997, SUM1, SUM2,
and SUM3. Table 3 show the outputs obtained for the
term Drink. The second step selects the unique OLAP
patterns, decomposing the OLAP operation patterns of
each dimensional members and by renaming them with
a unique labels. The output is a vocabulary table shown
in Table 5. The set Ss of switchable strings replacing
each OLAP operation with a label is built, and for each
switchable string in Ss, the OLAP operation patterns
is computed by following the path on the prefix tree
(see Table 6). However since the SUM functions do
not share the first input term then the OLAP unique
operation, patterns are casually computed respecting the
dimensional operation order. The output of this step is
shown in the right side part of the Table 6. The last
step aims to build the lattice structure (see Fig. 8). In
such structure, the edges represent OLAP operations,
the nodes correspond to the generated views, and each
view has a path which starts from the root. The OLAP
Operation Optimization phase generates the MST from
the lattice structure. Figure 8 shows the MST with the
view space and the processing cost computed for each
node in according to the proposed cost model, the nodes
colored in gray represent the views of the workload.
Once generated the MST, the views to materialize by
applying the solution proposed by [6], [7] are selected.
The HRUT procedure (with k = 3) selects the views:
root, v3, v9 and v18. The HRUS procedure with storage
space s = 81 (given multiplying 3 by the average size of
views in the MST), selects the views: root, v9, v11, v23.
Finally, the algorithm proposed by Shukla et al. [7], by
assuming that all aggregates have an equal probability
of being queried, selects the views: root, v10, v23, v24.

We have evaluated the processing time of each op-
eration and the storage space value with the Saiku
2.4 suite [27] installed on laptop with a 2.93 GHz i3
processor, 4 GB of RAM and Windows 7. To mitigate the
caching effect during the execution of multiple queries,
we cleaned the memory cache before of each execution.

Table 7 summarizes the results of the three algorithms
adopted in this paper. In particular, Size(M) indicates
the size occupied by the materialized views, Time(V, M)
indicates the total processing time to produce all the
views V in the MST, whilst Time(Q, M) is the process-
ing time of the materialized views that answer to the
workload queries. The algorithm HRUS reduces the total
processing time to answer the workload queries and the
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Fig. 8: The lattice structure with the OLAP operations
and the corresponding MST (dashed arrows).

used storage space (78MB wrt. HRUT that uses 171MB).
On the contrary, HRUT has a better performance in
term of processing time when all the views have to be
calculated. Moreover, AvQC has similar results in term
of storage space and worst processing time wrt. HRUS .

Table 8 shows the results of the three algorithms when
two consecutive executions are performed. In particular,
the processing times are improved in the range of 34-
36% in the second execution. Moreover, HRUS gives
better performance than the HRUT , reducing its pro-
cessing time to 0.34 seconds. The overall improvement
of HRUS is 62% after the first execution and 98% after
the second one, comparing with the algorithm that does
not materialize views. The improvement of HRUS is of
5% wrt. the other two algorithms.

To demonstrate the scalability of the proposed process
on the entire Sales data-mart, we have used the whole
CoDe model in Fig. 1(a) obtaining comparable results.
Indeed, the algorithm HRUS (with s = 180) reaches
an improvement of 60% wrt the algorithm that does
not materialize views and reduces the processing time
obtaining an improvement of 9% with respect the al-
gorithm HRUT exploiting the materialized views when

TABLE 7: Processing time and storage space of adopted
algorithms applied on the lattice structure of Fig. 8.

No Mat. AvQC HRUT HRUS

Selected views root
root, v10,
v23, v24

root, v3,
v9, v18

root, v9,
v11, v23

Size(M) - 66MB 171MB 78MB
Time(V, M) 47.19s 16.55s 8.66s 15.49s
Time(Q, M) 18.25s 7.38s 7.42s 6.91s

TABLE 8: Comparison of processing times of two con-
secutive executions.

No Mat. AvQC HRUT HRUS

1st execution-Time(Q, M) 18.25s 7.38s 7.42s 6.91s
1st execution-Profit - 59% 59% 62%
2nd execution-Time(Q, M) 18.25s 1.09s 1.11s 0.34s
2nd execution-Profit - 93% 93% 98%

TABLE 9: Algorithms evaluation on the entire Sales data-
mart by using the CoDe model in Fig. 1(a).

No Mat. HRUT HRUS

Sizep(M) - 327MB 177MB
Timet(V,M) 95.05s 45.41s 32.28s
Timet(Q,M) 38.10s 18.75s 15.16s
Profit - 51% 60%

workload queries have to be answered. In addition,
HRUS uses less storage space than the other algorithm.
In conclusion, the results assess that the algorithm HRUS

maintains good performance also on a complex CoDe
model.

Successively, the optimization process has been ap-
plied on the CoDe model of Fig. 9(a). In particular, this
model regards the cost and profit of the food category
of markets in the Washington state (i.e., WA), but taking
into account the fixed day (i.e., 24). The generated report
is shown in Fig. 9(b). All the phases of the proposed ap-
proach has been applied starting from the CoDe model,
and Fig. 10 shows the obtained lattice structure and the
computed MST. In particular, the view space and the
processing cost is computed for each node in according
to the proposed cost model, the nodes colored in gray
represent the views of the workload. For sake of space
the generated vocabulary table, switchable strings and
OLAP unique operation patterns have been omitted.

The HRUT procedure (with k = 3) selects the views:
root, v2, v48 and v59. The HRUS procedure with storage
space s = 114 selects the views: root, v2, v12, v13, v22, v32,
v42, v46, v54. Finally, the algorithm proposed by Shukla
et al. [7], by assuming that all aggregates have an equal
probability of being queried, selects the views: root, v2,
v12, v34, and v43.

Table 10 summarizes the obtained results of the three
algorithms. In particular, the algorithm HRUS reduces
the total processing time to answer the workload queries
and the used storage space (111MB wrt. HRUT that uses
298MB). In this case HRUT has a worse performance in
term of processing time when all the views have to be
calculated, due the. Moreover, AvQC has better results
in term of storage space but worst processing time wrt.
HRUS . It is worth noting that the obtained results are
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(a)

(b)

Fig. 9: CoDe model for the data-mart Sales concerning
the cost and profit of the food category in the WA state
for the day 24 (a), and its graphical representation (b).

TABLE 10: Processing time and storage space of adopted
algorithms applied on the lattice structure of Fig. 10.

No Mat. AvQC HRUT HRUS

Selected views root
root, v2,
v12, v34, v43

root, v2,
v48, v59

root, v2, v12, v13,
v22, v32, v42, v46, v54

Size(M) - 96MB 298MB 111MB
Time(V, M) 48.70s 21.11s 25.75s 17.16s
Time(Q, M) 24.07s 17.03s 16.89s 15.50s
Profit - 29% 30% 36%

worse considering the ones obtained on the previous
CoDe model (i.e., 36% vs. 62%), due the presence of an
higher number of leaf nodes onto the MST correspond-
ing to the workload queries wrt the MST depicted in Fig.
8. This aspect highlights how the results are affected by
the lattice structure.

5 CONCLUSIONS

It this paper, we propose a process based on the CoDe
modeling to detect a set of view to materialize. Through
the CoDe model, the company manager expert of a spe-
cific domain designs what reports have to be visualized.

Fig. 10: The lattice structure with the OLAP operations
and the corresponding MST (dashed arrows) constructed
on the CoDe model in Fig. 9(a).

This information can be exploited to optimize the queries
used to extract data from DW.

The proposed approach has been evaluated on a real
DW obtaining an improvement on the processing time
in the range of 36-62% for the algorithm HRUS wrt.
the solution which does not perform any materialization,
and 7% wrt. an approach that exploits the materialized
views maximizing the benefit per unit space based on
their probability to be queried (i.e., AvQC). In the case of
two consecutive executions, the algorithm HRUS reaches
an improvement of at least 98% after the second execu-
tion. This value is quite constant after other successive
iterations. By considering a whole CoDe model, the
results confirm the ones obtained on a sub-part of the
model. In particular, the algorithms HRUT and HRUS

reach an improvement of 51% and 60%, respectively.
To consolidate the results presented in this paper, we

plan to test the proposed process on dynamic and larger
DWs.

In conclusion, through the CoDe model, the company
manager expert of a specific domain, designs what re-
ports have to be visualized. This information can be
exploited to optimize the queries used to extract data for
that reports providing a valid decisional support. In the
future, we plan to manage the incremental changes of
a pre-existing CoDe model that reflect the data updates
in the DW. In particular, we expect to identify the parts
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involved in the changes and update the data structures
used in the optimization process only by considering
these parts. This further will reduce the costs needed
to extract data for reports. Moreover, we shall consider
to add new functionalities based on Data mining tech-
niques, which allow to investigate the CoDe model and
help the company manager to easily perform statistical
analysis and to find patterns on selected data.
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