
Integration of Multiple Heterogeneous and
Autonomous Web Services using Mediation

Approach: Open Challenges
John Samuel 

Université de Lyon, LIRIS 
France

Christophe Rey
Université Blaise Pascal, LIMOS 

France

Abstract—Regular users and enterprises are now increasingly
dependent on web services. This growing dependence on one
hand has simplified routine tasks, but on the other hand it has
resulted in loss of direct control over the data. Nevertheless, both
users and enterprises require simplified and generic solutions
to access their data. The classical mediation approach from
the data integration field provides a uniform query interface
to diverse data sources hiding the underlying heterogeneity. But
using this approach over multiple heterogeneous and autonomous
web services has several open challenges. In this article, we will
take a look at some of these challenges that need to be addressed
for achieving a fully automated solution.

I. INTRODUCTION

Service providers are increasingly opting to provide service
solutions over the internet to reach out to their clients. This
approach often referred to as Software as a Service (SaaS)
has the potential to target people with different devices and
operating systems. There are several reasons for this shift.
One among them is the growing usage of web browsers and
mobile applications. Software solutions for personal computers
limit their usage to specific platforms whereas web services
are accessible to a very wide audience of people with diverse
devices having internet access.

Not only regular users, even small and medium scale
enterprises are now increasingly dependent on web services
for their daily requirements. On one hand, it has enabled them
to focus on key aspects of their business without worrying
about data management. But on the other hand, this growing
dependence on web services has also resulted in loss of
direct control over their enterprise data. API (Application
Programming Interface) provide a convenient mechanism for
enterprises to access and manipulate their data managed by
the service providers. It allows the clients to build their own
internal applications and dashboards. Service providers expose
the API so that both the clients and third party users authorized
by the clients can access and manipulate the client data.

But web services managed by different providers are het-
erogeneous. It is practically difficult for any small enterprise

This is a longer and revised version of the article ‘Challenges in Integrating
Multiple Heterogeneous and Autonomous Web Services using Mediation
Approach’ presented in ICDIM 2016, Porto, Portugal.

to write applications to integrate with every web service they
use. Therefore a generic solution is required to integrate with
these multiple heterogeneous and autonomous web services
[1], [2]. Such a solution will enable them to have access to
their historical data. Integrating data from various sources,
also called data integration is therefore an important topic of
research. Several approaches have been proposed [3], [4], [5],
[6] and tested on data sources like distributed databases, web
pages. Mediation approach [4], [7], [8] is a virtual integration
approach where a uniform query interface is provided to a
multitude of heterogeneous and autonomous data sources. The
data sources form the original source of information. The data
source relations form the local schema. A mediated or global
schema is created over which the user queries are formulated.
Global schema relations and the local schema relations are
linked with the help of mappings. These mappings are relation
definitions expressed with respect to either global schema
relations or source schema relations. Any query posed over
the global schema needs to be translated to a query involving
the source schemas. The users of a data integration system
may or may not have direct control over the schema of the
data sources (like in the case of autonomous web services).

A fully automated and generic solution to integrate with
multiple web services is a challenging research and industrial
problem. In this article, we take a look at various prob-
lems concerning a fully automated integration with multiple
heterogeneous and autonomous web service API using the
mediation approach. Section II presents the overall problem in
detail, briefly presenting the various available interfaces to web
services, how some of these interfaces are used for integration
and the mediation approach. The section also presents a
detailed example that we will use throughout the article to
explain the challenges. We then discuss the various challenges
in section III and finally conclude the article in section IV.

II. THE PROBLEM

Every service domain like project management, email mar-
keting, helpdesk, accounting etc. manages specific resources.
Take for example, a project management service domain
manages the various projects and the related tasks of an

38

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services 
using Mediation Approach: Open Challenges 

John Samuel, Christophe Rey (p. 38 - 46)



enterprise or a user. Some of the important resources asso-
ciated with project management services are projects, tasks
or specific ones like open projects, archived projects, open
tasks, completed tasks etc. Web service providers provide an
interface for direct human consumption making use of web
technologies like HTML, stylesheets (CSS), javascript etc.
Clients access this interface through web browsers. Therefore
web service utilization follows a client-server architecture;
services are provided by the servers of the service providers
and the users with their browsers constitute the clients.

For the sake of simplicity, we assume that resources can be
represented by a tuple of values by the web services (especially
those using relational database technologies). Recall that such
a form of representation can be easily extended to database
tables, XML, JSON or any other structured formats. However,
the internal storage formats used by the web services may
remain unknown to the end user. When the clients use a
web service for the first time, they are asked to provide
various authentication credentials for creating an account on
the servers of the web service. These credentials are meant
for subsequent usages in order to ensure only users with the
right credentials are accessing the data. Using a web service
means accessing, manipulating or deleting the client resources.
Clients can also authorize third party users to use these web
services on their behalf, for example for integrating with a
third party service. For this purpose, service providers also
provide various authorization mechanisms to help the clients
decide what usages are permitted to the third party users.

Additionally, web services often provide another interface
called application programming interface (API). API is meant
for machine-to-machine communication; users can write their
own programs and applications that can automatically commu-
nicate with the web services. The usual message format used
for the communication between clients and servers is XML
or JSON. A web service API has one or more operations.
Operations are meant to access, manipulate or remove the
resources. They are usually referred to as CRUD operations
taking into account their ability to (C)reate new resources,
(R)ead, (U)pdate or (D)elete some existing resources from the
services. In this article, we focus only on the (R)ead operations
that give the ability to access the resources and we refer
them as data-providing operations [9]. Each such operation
takes zero or more input parameters and returns zero or more
tuples of values. API operation calls may also respond with
errors like internal server errors, non-availability of services
or missing resource error. The client-side applications make
appropriate decisions on receiving an error (like logging the
error or alerting the user).

The input of some API operations are dependent on the
output of some other API operations of the same service or
other services. Thus it requires that operation calls are made in
a certain sequence. In some cases, to obtain complete details
of resource, the same operation must be called with varying
parameters like page numbers. This approach called pagination
is commonly found in search engines and comes in a variety of
forms. API calls also require authentication and authorization

parameters.
APIs are documented in several ways. Research and indus-

trial community have previously proposed various machine
readable standards to describe the web service APIs, particu-
larly WSDL [10] and WADL [11]. These machine readable
formats are used to automatically generate codes that can
integrate with web services. Another common approach is to
describe the API in a human-readable format like the textual
description. This human-readable documentation is used by
developers to understand various API operations, to derive re-
quired operation sequences and to make appropriate decisions
pertaining to the desired operations for a particular application.
A third approach is to provide both human-readable and
machine-readable (on the same web page) to target developers
as well as to support the automated integration of applications
with web services. Such an approach is seen in the proposal
of a standard like hRESTS[12].

Web services catering to the needs of numerous clients often
impose some limits like limiting the number of API operation
calls that can be made during a period of time. These limits
often grouped under service-level agreements or SLA specifies
the number of API calls that can be made by a client or a
particular IP address of the client.

Furthermore, service providers often make updates to their
services like adding, modifying or removing resources, chang-
ing message formats for communication, deprecating certain
API operations, offering new API without any backward-
compatibility as well as changing the SLA. These changes
are usually announced by emails, official blog posts or other
social media websites. Any of the above changes requires the
clients to redevelop their internal applications.

A. Integration using Web Service API

Integration with web services is a well researched field.
These research works differ on whether they approach the
problem from the perspective of the service provider or from
that of the client. Works related to the former have given a
greater thrust to promoting machine-readable API documen-
tation by the service providers. Use of machine readable API
documentation ensures that clients can make use of some
generic automated code-generators to generate programs for
integrating their internal applications with the concerned web
service.

Several works like [13] study data integration using web
services built over web standards like XML, HTTP, SOAP,
WSDL, UDDI for the purpose of aggregation. Considering the
rapid advancement of mobile devices, an upcoming approach
is to offer API integrated software development kits (or SDK)
[14] in various programming languages. This approach lets
the clients download the latest version of the official SDK
and easily integrate it with their internal application without
the need for writing a lot of code. However, this approach is
limited to making available the SDK in popular programming
languages of the code. Some clients with platforms developed
in other programming languages cannot conveniently make
use of these SDKs. Also this SDK approach does not the

39

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)



overcome the challenge of evolving API (or SDKs) that
requires modification to the existing client codebase.

Research works that look at the problem from the client
perspective suggest solutions to easily add or remove new
web service API. ActiveXML [15] is a language that extends
XML to allow the embedding of web services calls. Web
mashups [16], [17] compose one or more web services to
create interesting applications. One commonly used approach
to creating them is by using a graphical composition tool, a
visual programming approach to reducing the programming
overload and to deal with different API operation invocation
sequence patterns. Due to the requirement of manual efforts,
the number of web services that can be integrated is still
very limited. Also the key aim of web mashups is to make
advantage of diverse web services to create new interesting
web services.

B. Mediation Approach

Data integration [18] aims to provide a uniform query inter-
face to multiple heterogeneous and autonomous data sources.
The mediation (global) schema is primarily used to query the
data sources and is not materialized (hence, the name virtual).
In mediation systems, we recall that there are three common
ways by which the sources (the local schema relations) can be
mapped to the global schema relations: Global-as-View(GAV)
mapping [7], Local as view(LAV) mapping [19] and Global-
Local as view mapping (GLAV) [20]. In GAV, each relation of
the global schema is defined as a query over the local source
relations wheras in LAV, each (local) source relation is defined
as a query over the global schema relation. GAV mediators
are known to offer good query answering properties, while
facing an evolution in the sources may be difficult (e.g., adding
a new source implies to potentially updating many relation
definitions in the global schema). LAV mediators are known
to easily handle source changes, while query answering is
algorithmically more difficult. Indeed, the user query posed
to the global schema must be rewritten into queries that can
request the sources. And rewriting algorithms have a high
complexity (NP-Complete at least) [21]. In GLAV, the global
and local schema relations are mapped using a set of tuple
generating dependencies (TGDs). LAV is easier than GLAV
with respect to an algorithmic point of view. Choosing GAV
would amount to changing the mappings on a frequent basis.
Whereas in the case of LAV, a new data source will simply
require a new LAV mapping and no change in the existing
mappings are required.

Examples of such information systems include
Infomaster[22], TSIMMIS [23] and Information Manifold[24].
Infomaster uses rules and constraints to describe the various
data sources. TSIMMIS uses GAV mapping whereas
Information manifold considers the query planning under
the LAV settings. There are some more works focusing on
the use of declarative languages especially for XML-based
data sources. Enosys XML Integration Platform (EXIP) [25]
is an XQuery-based integration platform. [26] makes use
of semantic web standards like RDF and SPARQL and the

API Documentation

API

Web Service API Wrapper

Query Rewriting and Evaluation Engine

API Operation Descriptions,

Authentication Parameters

Request
Response/

Error

User Queries on 

Global Schema

Local Schema-Global 

Schema Mappings

API Operation

Transformed Operation

Response

SN
1

SN
2

API DocumentationAPI Documentation

 Query 

Results

Fig. 1. Mediation approach for extracting data from web services

mediation approach with (ontological) query rewriting to
provide on-demand automated integration of data providing
web services.

In the context of data integration with web services, every
web service API operation is seen as a relation with access
patterns[19], considering the input and output parameters of
the operation as relation attributes and the operation name as
relation name. These operations (seen as relations with access
patterns) are defined using the global schema by applying a
mapping technique: conjunctive query[27] based LAV (Local
as View)[19] mapping. A translation process called query
rewriting rewrites the user queries formulated over the global
schema relations to the actual web service API operations. A
query evaluation engine evaluates this rewritten query and the
query response thus obtained form a (historical) record. These
records can be stored and later used for various purposes like
data analyses (e.g., to compute the performance indicators).

C. Example on Mediation Approach

Consider the domain of social networking. A user shares
updates with other users and can also view the details of a
particular status (or update) like the creation date of the status
and the view count. Therefore two primary global schema
relations in this domain can be user and status.
user(userid, source, name)
status(statusid, source, userid, creationdate, viewcount)
where userid corresponds to the identifier of the user,

source to the name of the social networking web service,
name to the name of the user, statusid to the identifier of
a particular status, creationdate to the creation date of the
status and viewcount to the total number of status views.

Consider two social networking web services: SN1 and
SN2. Both expose their services through API. SN1 uses XML
data format whereas SN2 uses JSON.
SN1 provides the following API operations. Superscript i

is used to denote input parameters and similarly o is used to
denote output parameters.

40

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)



1) sn1myido(userid): returns the user identifier of the
respective owner of the social networking service.

2) sn1userio(userid, name): takes as input the user iden-
tifier and returns the name of the user.

3) sn1statusiooo(userid, statusid, creationdate, count):
takes as input the identifier of a user and returns the
details of statuses like the status identifier, the creation
date and view count of the status.

SN2 provides the following API operations
1) sn2myidoo(userid, name): returns the user identifier

and name of the respective owner of the social network-
ing service.

2) sn2updateiooo(userid, statusid, creationdate, count):
takes as input the identifier of a user and returns the
details of all statuses of the user like the status identifier,
creation date and view count.

For simplicity, we consider simple conjunctive-query [27]
based LAV mapping as given below:

sn1userio(userid, name) ← user(userid, ‘SN ′
1, name)

sn1myido(userid)← user(userid, ‘SN ′
1, name)

sn1statusiooo(userid, statusid, creationdate, viewcount)←
status(statusid, ‘SN ′

1, userid, creationdate, viewcount)
sn2myidoo(userid, name)← user(userid, ‘SN ′

2, name)
sn2updateiooo(userid, statusid, creationdate, count)←
status(statusid, ‘SN ′

2, userid, creationdate, viewcount)
We present example XML/JSON responses for two of the

above operations.
sn1statusiooo(userid, statusid, creationdate, viewcount)

returns the following message.

<?xml version="1.0" encoding="UTF-8"?>
<xml>
<statuses>

<status>
<userid>10</userid>
<identifier>1022</identifier>
<text>I am on my way</text>
<date>2016-03-04T11:20:18+02:00</date>
<count>25</count>

</status>
<status>

<userid>10</userid>
<identifier>1023</identifier>
<text>Giving a presentation</text>
<date>2016-03-04T13:38:48+02:00</date>
<count>2</count>

</status>
</statuses>

</xml>

A simple transformation using XSLT to obtain desired
information is given below. It transforms the above XML
message to a list comma-separated values of user identifier
(userid), status identifier, its creation date and the text value.

<xsl:stylesheet
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
version="2.0">

<xsl:output method="text"

omit-xml-declaration="yes"
cdata-section-elements="namelist"/>
<xsl:template match=’/’>
<xsl:for-each select=’statuses/status’>
<xsl:value-of select=’userid’/>,
<xsl:value-of select=’identifier’/>,
<xsl:value-of select="fn:substring(

current()/date,1,10)"/>
<xsl:text>&#xa;</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Example JSON response for sn2myidoo(userid, name) is
given below:

{
"identifier": "345",
"name": "Kevin Bob"

}

A user poses query over the global schema: Get me all
statues from ‘2016-03-04’ and their viewcounts from various
social networking services.

q(statusid, source, count)← status(statusid, source,
userid, ‘2016− 03− 04′, viewcount)

In the mediation approach, the above query is translated
to query formulated over the local schema relations (SN1,
SN2 API operations) using query rewriting approach and
then evaluated using a query evaluation engine. Classical
query rewriting algorithms include the bucket algorithm [28],
minicon algorithm [29] and the inverse rules algorithm [30],
[19]. An inverse rules query rewriting is given below.

user(userid, ‘SN ′
1, f(...))← sn1myido(userid).

sn1userid(userid)← sn1myido(userid).
status(statusid, ‘SN ′

1, userid, creationdate, viewcount)←
sn1userid(userid),
sn1statusioo(userid, statusid, creationdate, viewcount).

user(userid, ‘SN ′
2, name)←

sn2myidoo(userid, name).
sn2userid(userid)← sn1myido(userid).
status(statusid, ‘SN ′

2, userid, creationdate, viewcount)←
sn2userid(userid),
sn2updateiooo(userid, statusid, creationdate, count).

q(statusid, source, count)← status(statusid, source,
userid, ‘2016− 03− 04′, viewcount).

Readers may have noticed two domain rules [19] with heads
sn1userid and sn2userid. They correspond to the respective
data types of these identifiers.

For more examples of rewritten queries, refer [19], [31],
[32]. The overall approach of extracting data from web ser-
vices is shown in Figure 1. Query Rewriting and Evaluation
Engine rewrites query formulated over the global schema
to queries described using the API operations (or relations
with access patterns) using the global-local schema mappings.
During the evaluation, on encountering any API operation,
the Web Service API Wrapper is invoked which makes use
of the web service descriptions (HTTP URL, body, method,
message format) and user authentication parameters, the de-
tails of which are obtained from API documentation to make

41

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)



request calls to API. The API operation responses (e.g.,
like XML/JSON sample responses shown above) are then
transformed to a desired internal format (a simple e.g. 2016-
03-04T13:38:48+02:00 to 2016-03-04) and fed back to the
engine which computes the final result. Query results are
optionally stored to the database for any possible future use.

III. CHALLENGES

There are several challenges to obtain a fully automated
and generic solution to integrating with numerous, heteroge-
neous, autonomous web services with mediation based data
integration approach. They are highlighted in Table I and need
to be addressed for achieving a fully automated and efficient
solution of Figure 1.

A. Missing Standards and Information in API Documentation

APIs are documented in several ways targeting both de-
velopers and machines. Research and industrial community
previously proposed many machine readable standards [33],
[34] to describe the web service APIs, particularly WSDL [10],
SA-WSDL [35], SA-REST, hRESTS [12], OWL-S, WADL
and USDL [36]. These (semi)-machine readable formats are
useful to automatically generate codes that can integrate with
web services.

Architectural styles like REST were proposed by [37] to
supporting loose coupling between clients and servers. This
loose coupling can be achieved by several ways including
creating stateless servers, the use of self-describing messages,
hypermedia as the engine of application state etc. Initial
web browsers, for example use protocols like HTTP [38]
and HTML for communicating with (stateless) web servers.
Use of standardized protocols and status codes helps browser
designers to develop a uniform solution to retrieve web pages
from multiple autonomous servers.

REST approach is also used in web service API commu-
nication. [39] analyses the use REST APIs of mobile traffic
(HTTP) for a period of one day analyzing the use of tunneling
requests using a single HTTP method (POST), handling of
resources (especially their names and associated operations)
and the use of hypermedia. It concludes that there exists a
lot of difference between the practice of current generation
of web services usually referred to as ‘RESTful’ and the
actual theory [37]. A similar observation has also been made
by [32] focusing on API documentation of three domains of
services concluding that there still exists web services that
are not described using a machine-readable language (with or
without semantic features) and REST principles are not fully
implemented.

[39], [32] also show that request parameters of data pro-
viding operations are passed through the URL, header or
the body of the HTTP request with different HTTP methods
(not confined to HTTP GET). Operation request and response
parameters in XML/JSON formats are often described in
the documentation in human-readable texts like enumerated
list of parameters. Thus it requires extra manual effort to

translate this information to associated XSD/JSON-schema for
validating operation responses.

Another major challenge is a missing common approach to
describing API operation errors [39], [32] and authentication
[40]. HTTP status codes have categorized errors to support
their distinction and taking appropriate actions (like in internet
browsers). There are several instances where 200 (Success
HTTP status code) is used for both successful and failed API
operation calls. The client, therefore, has no way to distinguish
a successful message from the failed response. In such cases,
new status codes are introduced by the services and passed in
the response body. This requires parsing of received response,
thereby losing an important benefit of HTTP status codes.

Several assumptions made by the services concerning the
internal schema is missing in the documentation. Some com-
monly missing information include missing data dependencies
assumed by the service providers. Take for example, the (pri-
mary) keys used in the resource representation are not usually
documented. The clients usually need to make assumptions or
infer them by making several API calls. Data dependencies
like full dependencies, functional dependencies, inclusion de-
pendencies are useful in optimizing [41] the number of API
operation calls.

B. Expressive Mappings and Query Rewriting

End-users are usually not interested in complete details of
a resource. Take for example, business-metrics requiring ap-
plications are not interested in various attributes of a resource
like a detailed description of a project, task or a user status.
In the above XSLT example, we didn’t make use of status
text (statuses/status/text) from the XML response. Some
services, especially web search API services do offer options
to selectively filter desired attributes of a resource and even
desired range of values.

Another major limitation is a missing search API opera-
tion that could enable the application to specify the desired
resources matching certain criteria (e.g. new resources created
during a certain period or the resources that underwent some
recent changes). This missing search and filter operations
on one hand necessitates several unnecessary API calls and
bandwidth usage and on the other hand, it also puts an
additional burden on the client applications to filter out the
desired result. Continuing with our above example, suppose
SN1 and SN2 API had operations using which, the user can
specify a range of dates to obtain user updates for a given
time period or an operation to obtain the status on a given
date or time. It would have reduced a lot of internet usage
consumption and the unnecessary XML parsing to just extract
the status on a given date.

But describing the above search/filter API operations with
expressive global-local mappings also comes at a cost. Query
answering using views with arithmetic (comparison) opera-
tions like ≥ or ≤ is another key research area in mediation
approach. As mappings become more expressive, so does the
associated complexity of query rewriting [21], [42] .

42

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)



S.No. Challenge Component
A. Missing Standards and Information in API Documentation API Documentation, Query Rewriting and Evaluation, Web Service API Wrapper
B. Expressive Mappings and Query Rewriting Query Rewriting and Evaluation
C. Errors/Failure Handling mechanism Query Rewriting and Evaluation, Web Service API Wrapper
D. Handling Incomplete Information from Web Services Query Rewriting and Evaluation
E. Optimization Query Rewriting and Evaluation
F. Data Transformation for Subsequent Operation Calls Web Service API Wrapper
G. Evolving Web Service API API Documentation, Query Rewriting and Evaluation, Web Service API Wrapper
H. Scheduling API Operation Calls Query Rewriting and Evaluation
I. Data Model Storage

TABLE I
CHALLENGES IN AUTOMATED INTEGRATION OF WEB SERVICES USING MEDIATION APPROACH

C. Errors/Failure Handling mechanism

As discussed above, HTTP error status codes [38] are
used in some web service API. Following are some of the
commonly encountered errors encountered during operation
calls: operation request timeout, web service internal error,
permission denied, account revoked permission, API depre-
cation, API operation response changes, incorrect passage of
operation request(input) parameters, internal web service tem-
porarily unavailable, change in message formats (XML, JSON,
plain-text), operation deprecation etc. A common approach on
encountering any such error is to abort the query evaluation
and record the error status. In case of web browsers, the
user on encountering any of the above status codes decides
whether to refresh the browser after a certain time (e.g. on
internet service temporarily unavailable) or avoid any future
tries (e.g. on resource not found error). However a missing
common standard to describe the errors makes it difficult to
make appropriate automated decisions like whether to repeat
the API call after a period of time, alert the user/administrator
or totally avoid making the calls of the concerned API.

As presented in the example above, (i)nput and (o)utput
adornments are used to specify the input and output attributes
of a relation (or an API operation). Much of the research works
on mediation and access patterns discussed above concentrate
on these two adornments. [43] considers additional patterns
like unspecifiable and optional attributes, a common feature in
web services. These patterns commonly found in the API need
to be considered along with the errors. Whether error attributes
need to be considered in a separate relation with access
patterns or in the same relation as a new adornment/superscript
i.e., (e)rror is still an open question. The associated semantics,
therefore, need to be defined and studied.

D. Handling Incomplete Information from Web Services

Not all the web services of a service domain provide all
the information related to the global schema relations. Take
for example, if sn2update did not provide the view count,
several classical query rewriting algorithms including bucket
algorithm, minicon algorithm and inverse query rewriting
algorithm may not provide any results from SN2. In some
cases, it is interesting to have the available information even
if it is incomplete [44]. There are several ways by which
the incomplete information is represented: using Codd nulls,
marked nulls and horn tables. Codd nulls do not cover various

interesting information (e.g., when two unknowns are known
to have the same values). Even though horn tables are shown
[45] to be an efficient tool for handling incomplete information
in databases, they are difficult to be used along with the current
relational databases. Marked nulls are useful in a mediation
approach and they have been used for the purpose of query
rewriting [44] by bringing in the notion of p-containment, but
under limited LAV settings. Another interesting direction is
to consider the case when the data from the web services are
uncertain.

E. Optimization

API operation calls are expensive since they consume in-
ternet bandwidth and therefore need to be optimized. Several
optimizations have been proposed in the mediation approach.
These may be classified in two: static and dynamic approaches.
Static approaches ensure that the final rewritten query is
optimized before actually evaluating it whereas dynamic ap-
proaches ensure optimization during query evaluation. This
problem studied in a limited context by [41] suggests dynamic
query optimization under the functional dependencies existing
among the attributes of the relation, especially considering the
case where a single relation may have multiple access patterns.
Optimizations have been proposed for conjunctive queries
using sources with access patterns [46] by making use of the
optimized dependency graph in order to reduce the number
of accesses to the external data sources. [47] optimizes the
query answering problem by removing any useless accesses
to the sources that don’t contribute to the query’s answer. [31]
which uses inverse-rules algorithm suggests the use of two
optimizations one in the form of tuple-level filtering and an
algorithm that transforms the query plan into dataflow-style
streaming execution plan in order to reduce the number of
calls to the web services and executing the generated query
plan efficiently.

Another optimization approach is to make use of caching
by which the number of API operation calls can be reduced by
caching the API operation responses and use appropriate cache
eviction policy. Considering the various operation invocation
sequences, there are some operations that may be called more
often that the others. Hence there are several open questions
that need to be answered: whether to cache the complete
response or the transformed response, what type of cache
eviction policy need to be used and under what circumstances.

43

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)



Some caching heuristics have also been proposed in works like
[46] to optimize the number of API operation calls.

F. Data Transformation for Subsequent Operation Calls

Wrappers [48] play an important role in data integration. In
the case of web services, they play an important role [49] in the
transformation of previous operation responses for subsequent
operation calls. One good example is the pagination. Web
search results have been paginated [50] for quite a long time.
Similarly, API reduces the size of an operation response by
supporting paginated API operation responses (e.g., Paged-
Collection in Hydra [33]). There are several ways by which
pagination is supported; following are some of them:

1) (Page Number): This approach is commonly found in
web search. Search query responses include the total
number of pages on the first page. Subsequent pages
can be obtained with a number less than or equal to the
total number of pages. Here the default page size (or the
number of individual results on a page) is fixed by the
service provider.

2) (Page Number, Page size): It is similar to the previous
approach; the only change is that the end user is usually
given a possible list of page sizes to make a choice from.

3) (Page Links): In this approach, the total number of
results may not be known. Every page has links to
the first page, next page, previous page and last page.
Navigating these links help in finally obtaining the
complete result.

The above cases how desired information need to be extracted
from operation responses and need to be transformed for
subsequent operation calls.

Let’s reconsider the above example of
sn2updateiooo(userid, statusid, creationdate, count).
We now consider one additional input parameter, i.e.,
sn2updatenewiiooo(pageno, userid, statusid, creationdate,
count) where pageno corresponds to the page number, a
term commonly used when all updates (or search results)
are not given in a single call, but requires multiple
calls. We now introduce another API operation call
sn2totalupdateio(userid, updatecount) that gives the
total number of updates updatecount for a given user
userid. Thus the total number of pages must be calculated
(by the wrapper) making use of the value updatecount and
default page size before making calls to the sn2updatenew.
[32] presents a similar but complete example.

G. Evolving Web Service API

Changes to the web services API and their impact on
the clients have been extensively studied in [51], [1], [2].
Depending on the chosen global-local schema mapping (e.g.
GAV, LAV), web service API evolution requires changes to
these schema mappings, changes to web service descriptions
as well as the need to request for new authentication and
authorization from the end-users. Changes to the API are
usually announced through blogs, email updates etc. and
in some cases, through API operation responses. This may

make it difficult to automatically shift to the newer versions.
Periodical monitoring of blogs and emails for any change
announcements may require some human intervention.

H. Scheduling API Operation Calls

Service providers enforce certain terms of use on API usage.
These include limits to a number of API operation calls
that can be made in a given period of time. These service
level agreements between clients and service provide is to
ensure a better quality of service (QoS e.g., availability).
There is no common way [32] across service providers to
specify these constraints. Some service documentation have
special sections like API limits and usage whereas, in the
case of others, it needs to be detected through error message
whether some unknown limits have been exceeded. Therefore
it is significantly difficult to build a generic mechanism for
scheduling the API operation calls.

API operation calls are usually synchronous, i.e., the caller
makes the operation request and waits for the response. A
scheduler for a mediation approach must take into account
client resource constraints and heterogeneous SLA. Two ap-
proaches can be considered in mediation approach: serial
API operation invocation and parallel invocation. In the first
approach, API operation calls are made in a sequence [52], one
call at a time. Though simpler, it is not a scalable approach and
also it does not make the best utilization of client resources.
In the second approach, a thread pool [53] is created and
operations that can be executed in parallel are made. Take
for example, sn1myid and sn2myid calls can be made in
parallel. Similarly, once the above calls have returned results,
sn1status and sn2update can be made in parallel. Therefore
the query evaluation engine in a mediation approach must be
able to perform parallel operation calls, but keeping the access
patterns in consideration.

I. Data Model

In mediation approach, the global schema is usually not
materialized. However, for several practical reasons, it is useful
to store the query responses for future use. But modeling
a storage schema for different types of query responses is
challenging, especially because end-user queries may come
in various forms. Transforming query responses to formats
like JSON (or XML) or RDF triples for storage is one
possible solution for rapid visualization, for example. If it
involves further querying, data storage solutions including
SQL, NoSQL, triple stores, graph databases can be considered
depending on the usage of these responses.

IV. CONCLUSION

In this article, we presented various open challenges in
integrating multiple heterogeneous, autonomous and evolving
web services using mediation approach. Enterprises depending
on such web services require a fully automated solution for
extraction and further utilization of their data. Mediation
approach allows a declarative approach to the overall problem
of describing and querying desired data from web services.

44

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)JADI – Brazil – v. 2 n. 2 – 2016 



Nevertheless, there are several open challenges namely opti-
mization of a number of API operation calls, handling incom-
plete information and error responses, dealing with different
service level agreements and inferring required information
from web service documentation.

ACKNOWLEDGEMENT

Much of this work was done at LIMOS, Université Blaise
Pascal. We thank the Conseil General of the Region of Au-
vergne (France) and FEDER for funding our research project.
We also thank Farouk Toumani of Université Blaise Pascal,
Franck Martin and Lionel Peyron of Rootsystem for their
feedback during the development of DaWeS [32].

REFERENCES

[1] S. Wang, W. A. Higashino, M. A. Hayes, and M. A. M. Capretz, “Service
evolution patterns,” in 2014 IEEE International Conference on Web
Services, ICWS, 2014, 2014, pp. 201–208.

[2] T. Espinha, A. Zaidman, and H. Gross, “Web API growing pains:
Loosely coupled yet strongly tied,” Journal of Systems and Software,
vol. 100, pp. 27–43, 2015.

[3] C. T. Kwok and D. S. Weld, “Planning to gather information,” in In
Proceedings of the AAAI Thirteenth National Conference on Artificial
Intelligence, 1996, pp. 32–39.

[4] A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying heterogeneous
information sources using source descriptions,” in VLDB’96, Proceed-
ings of 22th International Conference on Very Large Data Bases,
September 3-6, 1996, Mumbai (Bombay), India, T. M. Vijayaraman,
A. P. Buchmann, C. Mohan, and N. L. Sarda, Eds. Morgan Kaufmann,
1996, pp. 251–262.

[5] L. Yu, W. Huang, S. Wang, and K. K. Lai, “Web warehouse - a new
web information fusion tool for web mining,” Information Fusion, vol. 9,
no. 4, pp. 501–511, 2008.

[6] P. Vassiliadis, “A survey of extract-transform-load technology,” in Inte-
grations of Data Warehousing, Data Mining and Database Technologies,
D. Taniar and L. Chen, Eds. Information Science Reference, 2011, pp.
171–199.

[7] A. Y. Halevy, “Answering queries using views: A survey,” VLDB J.,
vol. 10, no. 4, pp. 270–294, 2001.

[8] K. Tomingas, M. Kliimask, and T. Tammet, “Data integration patterns
for data warehouse automation,” in New Trends in Database and
Information Systems II - Selected papers of the 18th East European
Conference on Advances in Databases and Information Systems and
Associated Satellite Events, ADBIS 2014 Ohrid, Macedonia, September
7-10, 2014 Proceedings II, 2014, pp. 41–55.

[9] M. Masud and M. Rouached, “A web service based integration model of
data-providing sources,” in Eighth International Conference on Digital
Information Management (ICDIM 2013), 2013, pp. 320–325.

[10] W3C, Web Service Description Language 1.1, 2001. [Online]. Available:
http://www.w3.org/TR/wsdl

[11] M. J. Hadley, “Web application description language (wadl),” Mountain
View, CA, USA, Tech. Rep., 2006.

[12] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: An html mi-
croformat for describing restful web services,” in Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology - Volume 01, 2008, pp. 619–625.

[13] M. Hansen, S. E. Madnick, and M. Siegel, “Data integration using web
services,” in DIWeb, Z. Lacroix, Ed. University of Toronto Press, 2002,
pp. 3–16.

[14] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, “Survey,
comparison and evaluation of cross platform mobile application
development tools,” in 2013 9th International Wireless Communications
and Mobile Computing Conference, IWCMC 2013, Sardinia, Italy,
July 1-5, 2013. IEEE, 2013, pp. 323–328. [Online]. Available:
http://dx.doi.org/10.1109/IWCMC.2013.6583580

[15] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber,
“Active xml: Peer-to-peer data and web services integration,” in VLDB.
Morgan Kaufmann, 2002, pp. 1087–1090.

[16] M. Matera, “Web mashups,” in Encyclopedia of Database Systems,
L. Liu and M. T. Özsu, Eds. Springer US, 2009, pp. 3482–3483.
[Online]. Available: http://dx.doi.org/10.1007/978-0-387-39940-9 5019

[17] D. Benslimane, S. Dustdar, and A. P. Sheth, “Services mashups: The
new generation of web applications,” IEEE Internet Computing, vol. 12,
no. 5, 2008.

[18] J. D. Ullman, “Information integration using logical views,” in ICDT,
ser. Lecture Notes in Computer Science, F. N. Afrati and P. G. Kolaitis,
Eds., vol. 1186. Springer, 1997, pp. 19–40.

[19] O. M. Duschka, M. R. Genesereth, and A. Y. Levy, “Recursive query
plans for data integration,” J. Log. Program., vol. 43, no. 1, pp. 49–73,
2000.

[20] M. Friedman, A. Y. Levy, and T. D. Millstein, “Navigational plans for
data integration,” in AAAI/IAAI, J. Hendler and D. Subramanian, Eds.
AAAI Press / The MIT Press, 1999, pp. 67–73.

[21] S. Abiteboul and O. M. Duschka, “Complexity of answering queries
using materialized views,” in Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems. ACM Press, 1998, pp. 254–263.

[22] M. R. Genesereth, A. M. Keller, and O. M. Duschka, “Infomaster: An
information integration system,” in SIGMOD Conference, J. Peckham,
Ed. ACM Press, 1997, pp. 539–542.

[23] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom, “The tsimmis project: Integration
of heterogeneous information sources,” in In Proceedings of IPSJ
Conference, 1994, pp. 7–18.

[24] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, “The information
manifold,” in In Proceedings of the AAAI 1995 Spring Symp. on
Information Gathering from Heterogeneous, Distributed Enviroments,
1995, pp. 85–91.

[25] Y. Papakonstantinou and V. Vassalos, “Architecture and implementation
of an xquery-based information integration platform,” IEEE Data Eng.
Bull., vol. 25, no. 1, pp. 18–26, 2002.

[26] M. Barhamgi, D. Benslimane, and A. M. Ouksel, “Composing and
optimizing data providing web services,” in WWW, J. Huai, R. Chen,
H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and X. Zhang, Eds. ACM,
2008, pp. 1141–1142.

[27] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[28] J. D. Ullman, “Information integration using logical views,” Theor.
Comput. Sci., vol. 239, no. 2, pp. 189–210, 2000.

[29] R. Pottinger and A. Y. Levy, “A scalable algorithm for answering queries
using views,” in VLDB, A. El Abbadi, M. L. Brodie, S. Chakravarthy,
U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, Eds. Morgan
Kaufmann, 2000, pp. 484–495.

[30] O. M. Duschka and M. R. Genesereth, “Answering recursive queries
using views,” in PODS, 1997, pp. 109–116.

[31] S. Thakkar, J. L. Ambite, and C. A. Knoblock, “Composing, optimiz-
ing, and executing plans for bioinformatics web services,” The VLDB
Journal, vol. 14, no. 3, pp. 330–353, 2005.

[32] J. Samuel and C. Rey, “Dawes: Data warehouse fed with web services,”
in INFORSID, 2014.

[33] M. Lanthaler and C. Guetl, “Hydra: A vocabulary for hypermedia-driven
web apis,” in Proceedings of the WWW2013 Workshop on Linked Data
on the Web, Rio de Janeiro, Brazil, 14 May, 2013, 2013. [Online].
Available: http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf

[34] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decades overview,” Information Sciences,
vol. 280, pp. 218–238, 2014.

[35] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl: Semantic
annotations for wsdl and xml schema,” IEEE Internet Computing,
vol. 11, no. 6, pp. 60–67, 2007.

[36] O. Terzidis, D. Oberle, A. Friesen, C. Janiesch, and A. Barros, The
Internet of Services and USDL. Springer US, 2012, pp. 1–16.

[37] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” 2000.

[38] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” 1999.

[39] C. Rodrı́guez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali,
and G. Percannella, REST APIs: A Large-Scale Analysis of Compliance
with Principles and Best Practices. Cham: Springer International
Publishing, 2016, pp. 21–39.

45

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)



[40] M. Maleshkova, C. Pedrinaci, J. Domingue, G. Alvaro, and I. Martinez,
“Using semantics for automating the authentication of web apis,” in
ISWC on The Semantic Web - Volume Part I, 2010, pp. 534–549.

[41] A. Calı̀, D. Calvanese, and D. Martinenghi, “Dynamic query optimiza-
tion under access limitations and dependencies,” J. UCS, vol. 15, no. 1,
pp. 33–62, 2009.

[42] F. N. Afrati, C. Li, and P. Mitra, “Answering queries using views with
arithmetic comparisons,” in PODS, L. Popa, S. Abiteboul, and P. G.
Kolaitis, Eds. ACM, 2002, pp. 209–220.

[43] R. Yerneni, C. Li, H. Garcia-Molina, and J. D. Ullman, “Computing
capabilities of mediators,” in SIGMOD Conference, 1999, pp. 443–454.

[44] G. Grahne and V. Kiricenko, “Towards an algebraic theory of informa-
tion integration,” Inf. Comput., vol. 194, no. 2, pp. 79–100, 2004.

[45] G. Grahne, “Horn tables - an efficient tool for handling incomplete
information in databases,” in PODS. ACM Press, 1989, pp. 75–82.

[46] A. Calı̀ and D. Martinenghi, “Querying data under access limitations,”
in ICDE, 2008, pp. 50–59.

[47] C. Li and E. Y. Chang, “Query planning with limited source capabilities,”
in ICDE, 2000, pp. 401–412.

[48] M. T. Roth and P. M. Schwarz, “Don’t scrap it, wrap it!
a wrapper architecture for legacy data sources,” in Proceedings
of the 23rd International Conference on Very Large Data
Bases, ser. VLDB ’97. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1997, pp. 266–275. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645923.670992

[49] J. Samuel and C. Rey, “Generic web service wrapper for mediation based
data warehousing,” in Proceedings of the 6th International Conference
on Web Intelligence, Mining and Semantics, ser. WIMS ’16. ACM,
2016, pp. 34:1–34:4.

[50] J. Kim, P. Thomas, R. Sankaranarayana, T. Gedeon, and H. Yoon,
“Pagination versus scrolling in mobile web search,” in Proceedings
of the 25th ACM International on Conference on Information
and Knowledge Management, CIKM 2016, Indianapolis, IN, USA,
October 24-28, 2016. ACM, 2016, pp. 751–760. [Online]. Available:
http://doi.acm.org/10.1145/2983323.2983720

[51] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service API
evolution affect clients?” in 2013 IEEE 20th International Conference
on Web Services, 2013, pp. 300–307.

[52] J. Samuel, “Feeding a data warehouse with data coming from web
services. A mediation approach for the dawes prototype.” Ph.D.
dissertation, Blaise Pascal University, Clermont-Ferrand, France, 2014.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-01086964

[53] U. Zdun, M. Völter, and M. Kircher, “Design and implementation
of an asynchronous invocation framework for web services,” in Web
Services - ICWS-Europe 2003, International Conference ICWS-Europe
2003, Erfurt, Germany, September 23-24, 2003, Proceedings, ser.
Lecture Notes in Computer Science, M. Jeckle and L. Zhang,
Eds., vol. 2853. Springer, 2003, pp. 64–78. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-39872-1 6

46

JADI – Brazil – v. 2 n. 2 – 2016 

Integration of Multiple Heterogeneous and Autonomous Web Services using 
Mediation Approach: OpenChallenges 

John Samuel, Christophe Rey (p. 38 - 46)




