Applying the Particle Swarm Optimization +
Hill-climbing in the Flexible Job-Shop problem

Joido Baptista Cardia Neto
Computer Science Graduate Programa
Sdo Carlos Federal University - UFSCAR, Brasil
Jjoao.cardia@fatec.sp.gov.br

Abstract—The Flexible Job-Shop problem is a very interesting
and important problem. In this paper it is studied an approach of
the PSO (Particle Swarm Optimization) in the Flexible Job- Shop
problem, the studied and applied approach is derived from a
Travelling Salesman Problem solution with a few minor alterations,
trying to reach the optimum values discovered by a series of other
works. The goal of this paper is to indicate machines configuration
that better supports the its restriction and productivity necessity.

Keywords-PSO, Job-Shop

L. INTRODUCTION

The Flexible Job-Shop problem has attracted the attention
of several researchers in the fields of production management
and combinatorial optimization, this is due the fact that is NP-
Hard and it has a great impact in increasing the profit and product
quality in different industries [1]. There are several approaches
into utilizing PSO to solve the aforementioned problem, in [1]
the authors proposed a hybrid intelligent algorithm integrating
PSO and AIS (Artificial Immune System) it also adjust the fitness
in each iteration to prevent premature convergence. In [2] the
authors modifies the particle position to a based on preference
list-based representation, the particle movement based on a swap
operator and a particle movement based on a Tabu search, in
their paper the results show that the PSO outperforms other
meta-heuristics.

In [3] the authors utilizes a Pareto approach to solve the
problem utilizing PSO and a local search algorithm to achieve
the optimum. The majority of works that combines PSO with a
local search utilizes the hierarchical representation, separating
the routing and the scheduling. While the main meta-heuristics
search for a more efficient routing the local search focus on
finding the better scheduling for a given routing.

The current work utilizes the velocity calculation from [4]
and another set of optimizations directly in the scheduling in an
attempt to reach the optimum found in other works.

II. FLEXIBLE JOB-SHOP PROBLEM

In the current work the studied problem consists in a set
of N Jobs (each job with a set of operations) that needs to be
processed and finished in M Machines. The main purpose is to
evaluate the time taken to finish all the operations from all the
jobs and this work tries to find the best combination of a set of
operations inside a machine in order to minimize the amount of
time taken to conclude all operations.

I11. PARTICLE SWARM OPTIMIZATION
The Particle Swarm Optimization (PSO) was originally

-

P ﬂ'
w410 7

Edilson Reis Rodrigues Kato
Computing Department
Sdo Carlos Federal University - UFSCAR, Brasil
kato@dec.ufscar.br

proposed by Kennedy and Eberhart in [S] and, since then, has
been largely applied in a series of problems.

It is similar to genetic algorithm but, specially in the sense
that the system is initialized with a set of random solutions. The
major diversion from the previous is how these solutions are
guided in direction to the solution.

Each particle receives an stochastic velocity that helps to
guide them to explore and exploit the solution space. For this
to happen each particle records its best position Py and,
combining with the best globally solution (t,) found by the
swarm, it tries to scape local optimums.

PSO algorithm has the following steps:

* Step 1 - Generate initial random population for each
partcle X;

* Step 2 - Calculate the fitness for each particle X ;

* Step 3 - Evaluates the system, if reached the stopping
conditions, stop;

* Step4-Updates P, andt, ;

* Step 5 - Calculates new X, positions;

* Step 6 - Go to step 2.

A new position for a particle X, is defined by [4]:

Xilk+1) = X;(k) + Vi(k+1) (1)
being k the current iteration, i the particle number and V (& +
1) the velocity for the current particle in the next iteration.
V(k + 1) is defined by:
Vilk+1) = wli(k)+eiri (Fi—zal k) Feara (Py—xi(k)) (2

being w the inertia coefficient with values in the interval [0, 1].
Both ¢, and c, are defined as stochastic acceleration terms, the
last two terms (r, and r,) are random values in the interval [0, 1].

The stopping condition can be defined as a number of
iterations or if the algorithm found a fitness value that satisfies
the problem constraints.

Classical PSO (the algorithm described above) is only
applicable for continuous problem and, the Job-Shop and a big
range of applications, are discrete. To solve this problem is
necessary the adjustment of the way that new particles positions
are generated.

Iv. DISCRETE PSO
Inspired in [4] in this work the velocity of each particle
is represented as a set of permutations. With this in mind, the
velocities are calculated in the following form:
* Get two particles, a and b;

* Create the permutation Pab as given:
dy dz

» Jts dy 1
r“*"[h; bs hr,] @

* The velocity is the permutation array;

Another operation that has to be rewritten is the multipli-
cation. In the current work, when multiplying a constant to a
velocity vector, the constant dictates the chance that a single
permutation has to happen.

The formula for the new position of a particle is given
by [4]: .

Vilk+1) = ey RE(FF — 2:(k)) + eaRE(P) — () +
w(ey ByHPT — (k= 1))+)
c2By (P — zi(k—1))

In the above formula the R *' and R,*" are the random
values utilizes in the k — 1 iteration of the system.

The new position for a particle x(¢ + 1) is defined as the
application of the permutation defined in V(k + 1) to x (k).

V. HILL-CLIMBING

Hill-Climbing search is one of the simpler ways to perform
a local search in order to find the a local maxima. It algorithm
is very simple and consists in, given one solutions, looks at
the neighbours of that solutions and find the one with better
value. It is not maintained a search tree or any way of looking
forward. The following algorithm shows how to implement a
Hill Climbing Search, this is based on [6].

function hillClimbing (item.iterations)
bestltem <— item
while iterations > 0

neighbours <— getNeighbours(item)
for n in neighbours
if value(n) > value{ bestltem)
bestltem <— n

iterations <— iterations — |

return bestltem

Applying the Particle Swarm Optimization + Hill-climbing in the Flexible Job-Shop
problem

Jodo Baptista Cardia Neto et all(p. 40 - 43)

jL1:3.2 | jl,2:3,1 | j2.1:2,2

Fig. 1. Both representations for the Job-Shop problem utilized in the
current work. The Vector with 6 positions is the router vector and the
other is scheduling vector. This is a example for a solution in a 3X3
problem.

VI PROBLEM MODELING

In the current work a hierarchical modeling is utilized. There
are two vectors defined for each particle, one is know as routing
and the other scheduling. Both of them describes different sides
of the same problem.

For each particle the routing vector shows in which
machine each of the operations from each job will be made. The
scheduling shows the order of each one of these operations in
the machine. The Figure 1 shows both the representations.

VII. IMPLEMENTED SYSTEM

For the current work a set of optimizations are implemented
trying to reach the optimum found in other works. This set is
described as follows:

* Workload equalization: If there is a new G, and the
difference in the quantities of operations from two ma- chines is
bigger than one an operation from the machine with more items
is moved to the one with less operations. This is repeated until
there is no machine with more than two operations than the other
machine. If the equalized ttbest has a fitness smaller than the
original, the equalized becomes the new G,__;

* Apermutation is only applied to generate a new particle
if the fitness from the new element is better or equal from the old
one;

* For each particle x,() eight neighbours are generated.

The new particle x (¢ + 1) is the one with best fitness from
the eight neighbours;

e If, after 5 iterations, there is no improvement all the

Machires

8.4

new x(t+ 1) receives new random values - utilizing the same
algorithm from the initial population;

* If a new particle already was generated in an older
iteration, it goes trough a process of N random mutations, until
is a never seen before particle.

For each slot for each operation in the initial population is
made a roulette utilizing the processing cost. Smaller the cost
for a operation in a machine the higher the chance to it be in the
population.

TABLE I - COMPARISON OF RESULTS FOUND IN

LITERATURE
Proposed System | Makespan
P50 + 5A [E] 15
Proposed Work 15
P50 + TS 2004 14
MOPS0 2011 14

A. Applying the Hill-Climbing

The Hill-Climbing is utilized as an auxiliary meta-heuristics.
After calculating the new x, the scheduling for the position is
used as the input for the algorithm. If the output from the search
has a better fitness than the original scheduling than it is utilized.

VIII. EXPERIMENTS AND RESULTS

For the current work two experiments were made, utilizing
the benchmark given in [7]. The current work was evaluated on
the 8X8 and 10X 10 problem, with 50 particles and 30 iterations.
The values of w = 0.9, c1 = 0.5 and ¢, = 1.5. There were made
1000 iterations for the Hill-Climbing.

The minimum Makespan in the experiment with 8X8 was

15. The Figure 2 shows the Gantt chart for the result, Figure
3 shows the convergence curve for the implemented system.
Finally, Figure 4 shows the Boxplot for the experiment.

The Table I compares the results of the current work with
others found in the literature.

45 w 7 T 1 1

- |

a 5 10 15 2 25 30
Fig. 3. The convergence history for the best solution. It is possible to
see that the algorithm converges around the iteration 14 15.

For the 10X10 the minimum makespan was 9. But, from
the 30 executions, the values wont went above 10, this means
that the system is stable and can perform at its best in almost all
executions. The Figure 5 shows the machine configuration for a
10X10 solution, the Figure 6 shows the conversion curve of the
same problem and Figure 7 ilustrates the Boxplot for the current
executions.

The Table II shows the results with other works in the
literature.

a2

Applying the Particle Swarm Optimization + Hill-climbing in the Flexible Job-Shop
problem

Jodo Baptista Cardia Neto et all(p. 40 - 43)

Fig. 4. Boxplot from the 30 consecutive executions of the proposed
work. All of them returned a value between 16 and 15.

TABLE 11
COMPARISON OF RESULTS FOUND IN LITERATURE
Proposed System
PS0 + 54 [8] 7
Proposed Work 9
PS0 + TS 2004)
MOPSO 2011 7

IX. CONCLUSION

The results shows that, utilizing PSO+Hill Climbing to
solve the Job-Shop problem proved to be effective. All result
are in the 10% range of the best solutions found in the literature.

There are a few more thing that could be changed to reach
the optimum, things such as utilizing the level approach as in
[8] or utilizing another kind of local search, such as Tabu List
search.

Looking at the results it show clearly that improvement
in the scheduling is possible and, one of the extensions of this
work, would be trying to develop new heuristics that focus on
creating solutions with less idle time.

Looking at the convergence history it possible to see that,
one of the feature that helped the algorithm to escape local
optimum is the reset combined with the mutation applied.

For the future work it would be interesting to utilize the
critical path algorithm to generate the initial population and do
a grid search to find the best parameters to achieve best results
with the proposed work.

Makespan
=

REFERENCES
[11 H.W.Ge, L. Sun, Y. C. Liang, and F. Qian, “An effective pso and
ais-based hybrid intelligent algorithm for job-shop scheduling,”
IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 38, no. 2, pp. 358-368, March 2008.
[2] D.Shaand C.-Y. Hsu, “A hybrid particle swarm optimization for
jobshop scheduling problem,” Computers Industrial Engineering,
vol. 51, no. 4, pp. 791 — 808, 2006. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0360835206001471
[31 G. Moslehi and M. Mahnam, “A pareto approach to

multi-objective flexible job-shop scheduling problem
using particle swarm optimization and local search,”
International Journal of Production Economics, vol. 129,

no. 1, pp. 14 — 22, 2011. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0925527310002938
[4] X. Shi, Y. Liang, H. Lee, C. Lu, and Q. Wang,
“Particle ~ swarm optimization-based algorithms for tsp and
generalized tsp,” Information Processing Letters, vol. 103,
no. 5, pp. 169 — 176, 2007. [Online]. Available: http://www.
sciencedirect.com/science/article/ pii/S0020019007000804
[5S] R. Eberhart and J. Kennedy, “A new optimizer using
particle swarm the- ory,” in Micro Machine and Human

Science, 1995. MHS ’95., Proceedings of the Sixth
International ~ Symposium on, Oct 1995, pp. 39-43.
[6] S. J. Russell and P. Norvig, Artificial Intelligence: A

Applying the Particle Swarm Optimization + Hill-climbing in the Flexible Job-Shop
problem

Jodo Baptista Cardia Neto et all(p. 40 - 43)

Modern Approach, 2nd ed. Pearson Education, 2003.
[7] I Kacem, S. Hammadi, and P. Borne, “Approach by
localization and multiobjective evolutionary optimization for
flexible job-shop scheduling problems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 32, no. 1, pp. 1-13, Feb 2002.
[8] W. Xia and Z. Wu, “An effective hybrid optimization
approach for multi- objective flexible job-shop scheduling
problems,” Computers Industrial Engineering, vol. 48, no.
2, pp. 409 — 425, 2005. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0360835205000197

Gantt Chart

Machines

n 1 b 3 4 R 3] 7 7]

. ime . . L . .
Fig. 5. Gantt chart for the best solution. It is possible to see that it has a l\}'ﬂ(espan of 9. One interesting thing is that, in the presented solution, the
machines have similar workloads.

36— . . : : : T
o
{
anl | 08
I
[s |
5
l oA
I ;
a0
I nzl
L
i5 "x_‘ a
" %
10+ ."\._ E [
i
5 - -~ =L - > . Fig. 7. Boxplot from the 30 consecutive executions of the proposed

Fig. 6. The convergence history for the best solution. It is possible to work. All of them returned a value between 9 and 10.

see that the algorithm converges around the iteration 11 12.

