
31

SWARE: An approach to support software
aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo
Federal Institute of Alagoas
 Campus Arapiraca, Brazil

matheustor4.professor@gmail.com

Abstract—The need for uninterrupted computing services de-

mands for high system availability and reliability. Techniques and

methods to estimate and analyze system dependability are essential
to support software deployment and maintenance. Soft- ware aging

appears as a relevant issue in this context. Software aging is a

cumulative process which leads long-running systems to hangs or

failures. Software rejuvenation is used to counteract software aging.

Software rejuvenation usually comprises system reboot or application

restart to bringing software to a stable fresh state. This paper proposes

an approach to investigate software aging effects and software

rejuvenation effectiveness on a single experiment. The approach has

three phases: (i) Stress Phase

- stress environment with the accelerated workload to induce

bugs activation; (ii) Wait Phase - stop workload submission to

observe the system state after workload submission; (iii) Rejuvenation

Phase - find the impacts caused by the software rejuvenation. We
named our approach as SWARE (Stress-Wait- Rejuvenation). To

validate the SWARE approach, we present a case study. This case
study consists of an experiment of VM Live Migration as rejuvenation
mechanism for VMM software aging. The considered testbed is a
Private Cloud with OpenNebula and KVM 1.0. The obtained results
show that VM live migration is useful as rejuvenation for VMM
software aging.

Index Terms—Software Aging and Rejuvenation, Reliability,
Dependability, Availability, Cloud Computing

I. INTRODUCTION
High availability and reliability mandatory requirements of

a myriad of software systems. In Cloud Computing, for example,
software reliability and availability stays as top concerns for
customers [1] [2] [3]. Therefore, methods and techniques to
improve system reliability are of utmost importance.

Previous works introduce software aging as a pertinent
issue in the software reliability area [4] [5] [6] [7] [8]. Software
aging phenomenon consists in a gradual increase in software
failure rate or performance degradation during its execution
[9]. These effects usually happen because of errors accumulation
in software state. This accumulation can lead software to hangs
and total failures [10]. Systems with long-time of execution
may suffer from software aging effects [11]. Published works
presented software aging indicators on software as Android
OS [12] [13], Stream Video Player [14], Software-Defined
Networking Controllers [15], Cloud Com- puting Open-Source
Software [16], among others. Especially on Cloud Computing
and Virtualized Server Environments, the VMM (Virtual

Machine Monitor) is liable to suffer software aging, as presented
in [6] [7].

Software rejuvenation is the countermeasure to software
aging. Software rejuvenation consists of a proactive technique
to clean software aging effects by rolling it back to a stable
status. Software rejuvenation lies on an application restart
or a system reboot [17]. Previous works propose a schedule
to submit software rejuvenation actions [18] [19] to minimize
system downtime caused by these operations. More details of
software aging and rejuvenation are in Section II.

Usually, it is hard to define software aging causes. Errors,
memory leaks and other aging-related symptoms are non-
expected events [7]. A proper approach to deal with software
aging and rejuvenation issues is to study them in an isolated
environment running experiments and tests to understand
software aging symptoms and rejuvenation effectiveness.

This paper presents an approach to investigate aging symp-
toms and rejuvenation effectiveness on software systems. The
approach is named SWARE (Stress-WAit-REjuvenation). The
SWARE approach has three phases. (I) Stress Phase, which
aims to observe impacts of workload exposure in software in-
ternal state. (II) Wait Phase which observes software behavior
after workload submission. (III) Rejuvenation Phase, with the
goal of perceive consequences of software rejuvenation action
[20] [7]. The phases adjustment depends on selected software
for aging testing. The end of a phase triggers the start of next.
SWARE approach neglects the discovery of Time to Aging
Related Failure (TTARF). Section III contains more details
about proposed approach.

The Section IV has an experimental setup which uses the
SWARE approach. This experiment consists of investigation
of software aging and rejuvenation on OpenNebula/KVM12
Private Cloud [7]. In this case study, we investigate software
aging symptoms in KVM 1.0 component using an accelerated
workload of successive operations of attaching and detaching
15 virtual disks of 1 GB on a VM. We also checked rejuvena-
tion effectiveness through a VM Live Migration process. The
obtained results are in the Section IV-D. From results, it is
possible to understand system behavior on the three phases of
the experiment. Rejuvenation Phase results show that VM Live
Migration enables software rejuvenation of KVM software.

Section VI presents our conclusions and future works.

I M Umesh
Bharathiar University, Coimbatore, India

umesh.mphil@rvce.edu.in

Jean Araujo
Federal Rural University of Pernambuco (UFRPE)

Campus Garanhuns, Brazil
jean.teixeira@ufrpe.br

Paulo Maciel
Center of Informatics, Federal University of

Pernambuco, Brazil
prmm@cin.ufpe.br

32

II. SOFTWARE AGING AND REJUVENATION
Software aging is the accumulation of aging-related bugs

effects. Aging-related bugs often appear when the system reaches
conditions (e.g. lack of computational resources) which are
difficult to reproduce [21]. The consequences of bugs activation
lead to software performance degradation (or its failure rate
increases). Software aging can lead the system from hangs to
total failures [11].

A feasible way to determine software aging existence is to
observe system monitoring reports to find anomalous behavior
[22] [17]. The paper [23] presents a methodology based on
SNMP distributed tool for monitoring OS resources of a LAN of
UNIX machines to observe software aging existence. The Figure
1 depicts the general behavior of software aging.

Fig. 1. Software aging general behavior

The paper [11] presents first definitions of software rejuve-
nation. We can define software aging as a proactive technique
to avoid aging effects to reach critical levels. Software reju-
venation is also considered a cost-effective because it does
not require knowledge about roots of aging effects [17]. The
rejuvenation actions rely on restart an application to conduct it
to a clean state, without aging effects accumulated. Some papers
propose scheduling of software rejuvenation actions [18] [19]
to determine when to perform rejuvenation actions to maximize
overall system availability.

Experiments to measure and observe software aging symp-
toms may have a long duration. Some papers [6] [4] proposes
an investigation with accelerated experiments. Using this type
of investigation is possible to observe software internal state
alterations in a shorter time.

III. SWARE APPROACH
The SWARE approach has two preliminary tasks. First,

the selection of software component to test. Second, the
selection of a workload to stress this component. For example,
on an experiment of aging and rejuvenation in a Web Server,
a workload with a high rate of requests can stress the system.
The workload exposure aims to force the system to operate at
different levels of usage. Therefore, this workload may trigger
aging-related bugs activation. The workload selection must be
careful to avoid premature failures. And, the monitoring activity
should not cause high system intrusion.

As aforementioned, the SWARE approach has three phases
(Stress, Wait and Rejuvenation). The details of each are in next
sections.

A. Stress Phase
This phase aims to stress the system with selected workload.

The stress workload leads the system to increase resources us-
age. Therefore, monitoring reports should present an increase
in software failure rate or a decrease in software performance.
Figure 9 depicts the expected behavior of internal system state
in this phase.

The stress phase duration varies according to workload
submitted to the system. Workload submission stops when
resources usage or performance degradation reach a critical
level. At this point, probably aging bugs already be activated as
the system passes through different usage states.

B. Wait Phase
The major goal of Wait phase is to observe software aging

symptoms existence. Software aging effects remain in the system
even without incoming workload. After Stress Phase, there are
two possibilities: (i) system recovers from workload overhead
and returns to a stable state; (ii) or system persists degraded.
Software rejuvenation cleans up software aging cumulative
effects. If the system returns to a stable state without rejuvenation
action, there is no evidence of software aging existence. In that
conditions, the workload submitted to the system only causes
overhead in resources usage.

Fig. 2. Stress Phase expected behavior

The workload starts a cumulative process in the system on
Stress phase. Therefore, in the absence of rejuvenation action
system may continue in a degraded state. Figure 3(a) presents
a possible behavior of system state which highlights software
aging evidence. Figure 3(b) shows a possible behavior of system
state without evidence of software aging.

Wait Phase may during sufficient time to highlight software
aging cumulative process. The duration of Wait Phase should
be long enough to ensure that system persists in a degraded
state. Usually, to achieve this goal, Wait Phase should during the
approximately same time of Stress phase.

C. Rejuvenation Phase
A requisite for Rejuvenation Phase start is the software

rejuvenation action selection. This selection depends on the

 (b) Software internal state without software aging evidence

Fig. 3. Wait Phase

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

33

component stressed on the previous phases. Software rejuve-
nation relies on restart application or system reboot, but in
some situations, other types of rejuvenation may also be valid.
Rejuvenation phase starts on the software rejuvenation action
submission. The objective of this phase is to observe impacts of
rejuvenation action on internal system state. Figure 4 presents
variations in software state when software rejuve-nation is
useful or not.

Fig. 4. Rejuvenation phase

Figure 5 presents a flowchart with a summary of SWARE approach.

IV. A CASE STUDY
This section presents a case study using the SWARE ap-

proach. This case study consists of an experiment to examine
software aging on VMM KVM 1.0 and to observe VM Live
Migration effectiveness as software rejuvenation.

A. Testbed
The Cloud Computing testbed uses OpenNebula VIM 3.6

and VMM KVM 1.0. The testbed has four Physical Machines
(PMs), and one Virtual Machine (VM) connected to a private
local network (as presented in Figure 6). The testbed compo-
nents are:

• VM → runs an Apache Web Server with a HTML page
on Ubuntu Server 12.04 operating system;

• FrontEnd → responsible for managing Cloud Environ-
ment;

• Main Node → executes Virtual Machines;

• Standby Node → the target host for VM Live Migration,
and;

• Stresser → in charge of sending workload and
monitoring

Cloud Computing environment.
Table I presents the hardware configurations of PMs.

TABLE I: PMS HARDWARE CONFIGURATION

B. Workload Selection
The selected workload is a variation of previous experiments

of software aging in Eucalyptus Cloud Computing [24]. This
workload is a sequential operation of mount and unmount
15 Virtual Disks (of 1GB) on VM. The pseudo-algorithm in
Algorithm 1 presents mount and unmount workload.

Software Failure Rate Decreased?
Fig. 5. SWARE Approach

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

34

Besides the mount and unmount workload, we decide to
add a workload to Apache Web Server. We want to observe Web
Server performance impacts during the experiment. To select the
workload, we conducted a capacity test considering the same
testbed used in software aging experiment. The capacity test

Fig. 6. Testbed architecture.

uses the httperf tool with Autobench [25] [26]. This benchmark
tool sends requests to the Web Server and collects results
as response time (in milliseconds) and the amount of errors
observed. In httperf, the response time is the time between
sending the first byte of a request and receiving the first byte
of reply. And, the amount of errors take account of errors such
as connection timeout, socket timeout and connection refused.
The rate of requests is increasing over time. Figure 7 shows the
results of the capacity test.

Observing these results, we selected the workload of 2000
requests per second. The results show that the server can handle
this rate of requests with low response time and errors.

Figure 8 shows an overview of the selected workload to
software aging and rejuvenation experiments.

C. Software Rejuvenation Strategy
OpenNebula/KVM Clouds allow system managers to

per- form VM Live Migration. VM Live Migration consists
in remapping a VM from a PM to another with reduced op-
eration downtime [27]. Previous studies [28] [18] shows VM
Live Migration as a support mechanism to VMM software
rejuvenation. Figure 9 presents software rejuvenation strategy
for experiments.

On Stress Phase, the system is receiving workload to stress
VMM software. In this early stage, the system does not present
software aging effects yet. The Standby Node VMM is active
but not receiving any system requests. Wait Phase starts when
system status suffers from software aging. As Main Node VMM
manages VM, software aging effects will affect VM performance
too. VM Live Migration triggers the Rejuvenation Phase.

When VM arrives in the Standby Node, it can leverage a
fresh state VMM. Thus, previous VMM software aging effects
will not affect VM performance or failure rate. Finally, a Main
Node restart removes software aging effects accumulation.

Fig. 7. Capacity test.

Fig. 8. Workload Selected

Fig. 9. Software rejuvenation strategy

When VM arrives in the Standby Node, it can leverage a
fresh state VMM. Thus, previous VMM software aging effects
will not affect VM performance or failure rate. Finally, a Main
Node restart removes software aging effects accumulation.

System Monitoring reports support phases duration deci-
sion. These reports are obtained using a script in Shell Script
language [29] [30]. Based on principles presented in Section III,
Table 2 shows each phase period for our experiment. The entire
process during 13 consecutive days.

TABLE II: EXPERIMENT PHASES DURATION

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

35

D. Results and analysis
1)	 CPU	and	RAM	monitoring:	Figures 10 and 11 present

results of system resources monitoring. To improve results
visualization, the graphics present monitoring data from both
PMs: Main Node and Standby Node. Stress Phase and Wait
Phase in these plots are the results from Main Node monitoring
and the Rejuvenation Phase is the result from Standby Node
monitoring (which receives VM Live Migration). All plots
contain limits of Stress Phase, Wait Phase and Rejuvenation
Phase. The monitoring intervals are 30 seconds.

Therefore, CPU utilization results contain four metrics:
USER - CPU utilization percentage for User-level processes;
SYS - CPU usage for Kernel-level processes; IO - Waiting
for In/Out operations; IDLE - CPU idle percentage, excluding
otiose time waiting for In/Out.

Fig. 10. CPU Utilization

Figure 10 presents results of CPU utilization. The results
of this phase show significant IO requests rate for CPU. This
behavior occurs because PM has to communicate with VM
during mount disk workload and also has to redirect income
network traffic to VM. In the Wait Phase, CPU utilization tends
to return to normal levels. But, SYS requests rate remains at
higher levels than normal (comparing to Rejuvenation Phase).
As KVM resides on Linux Kernel (which is responsible for
SYS requests), CPU SYS requests rate may return to normal
state after a cleanup action. Rejuvenation Phase presents SYS
requests rate returning to normal levels.

Fig. 11. RAM Usage

Figure 11 depicts results of RAM monitoring. Results for
Wait Phase reveals that RAM consumption persists at high
levels. In this phase, PM continues to receive web requests
from the network. But, Rejuvenation Phase results presents a
decreasing usage of RAM resources.

An extra consumption of resource is necessary when a PM

receives a VM migration. Thus, there is a peak of RAM usage in
beginning of Rejuvenation Phase. After this, RAM usage results
show a decreasing behavior.

2) Web Server metrics results: VM depends on VMM
to interact with PM resources. Then, VMM state affects the
applications and services which run in VM. Thus, applica-tions
and services monitoring may present possible effects of software
aging. The results in this section show monitoring data collected from
benchmark tool of Web Server.

Figure 12 presents results of Web Server monitoring. As ex-
pected, Web Server suffers effects of high workload exposure in Stress
Phase. Response time and Amount of Errors were increasing during this
phase. Wait Phase results show Errors and Response Time remaining
at high levels. Rejuvenation phase brings the system to a stable state.

Fig. 12. Web Server Performance Results

3)	 General	Discussion:	Observing CPU results of Stress
Phase in Figure 10 it is possible to notice a similar behavior as
presented in [6]3. Still in Stress Phase, RAM results (Figure

11) and Web Server response time results (Figure 12(a))
present similar results as on [31]4.

As software aging causes internal software state degrada-
tion, its consequences may persist on software state until
software rejuvenation (or failure) occurs (as explained on
Section III). Results of Wait Phase shows a steadily degraded
software state. For example, the Web Server used in experi-
ments respond to requests workload specified (2000 requests
per second) with minimum response time and errors. But, after
Stress Phase, when possible activation of aging-related bugs
occurs, Web Server metrics go to higher levels.

Results of Rejuvenation Phase emphasize software aging
evidence on KVM software. After VM migration, VM arrives
on a fresh state KVM software. As VM migration suffices to
software internal state degradation removal, it is possible to
corroborate that VM migration is a useful technique to KVM
software rejuvenation.

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

36

V. RELATED WORK
The authors of [32] present an approach to apply accelerated

degradation tests on software aging experiments. The paper
uses a particular aging factor to control the aging effects on the
experimental setup. This aging factor is obtained by sensitivity
analyses based on statistical design of experiment. We also
applied accelerated tests on the Stress Phase of our experiment.
Different from the authors of mentioned paper, the SWARE
approach also comprises software rejuvenation.

The paper [33] presents a methodology to estimate software
aging effects by using time-series analyses. The authors ana-
lyzed the behavior of a Web Server under a varying workload.
The main goal is to detect and estimate resource exhaustion
time due to software aging effects. This paper helps us to
define technologies used in our case study. As presented in the
mentioned paper, we also used a Web Server and the httperf tool
in our experimental setup. The paper also presents an extensive
statistical analysis used in the resources estimation. Different
from this paper we used a generic workload to induce software
aging bugs activation. SWARE approach is simpler to apply as it
does not require statistical expertise.

The papers [31] provide valuable inputs on how to perform
software aging experiments in a Web Server. The main goal of
the authors is to conduct a software aging analysis of a Web
Server. Different from the results presented in the mentioned
paper, we also include the software rejuvenation effectiveness
test on SWARE approach.

The paper [34] offer a comprehensive approach to software
aging and rejuvenation experiments on a Web Server. Besides
the techniques to observe software aging problems, the authors
implemented a rejuvenation agent to mitigate aging effects in
the Web Server. The presented results show substantial reduc-
tion of software aging when the rejuvenation agent is inte-
grated into the environment. The proposed rejuvenation agent
uses a predefined interval to submit software rejuvenation in
the environment. Different from this paper, the Wait Phase of
SWARE approach allows the system manager to decide when to
perform rejuvenation action. Therefore, it is possible to reduce
overhead caused by recurrent software rejuvenation actions.
Nevertheless, the mentioned paper provides helpful insights to
SWARE approach.

Cotroneo et al [35] provides a broad investigation of soft-
ware aging causes in Linux Operating Systems. The adopted
approach aims to trace kernel activities to observe possible
software aging effects. The results of the paper show that the
filesystem operation causes significant contribution in software
aging indicators. This result may explain the behavior of Stress
Phase of our experiment when the VM filesystem is dealing
with software aging workload. Matias et al [36] also present
a methodology to measure software aging effects through OS
kernel observation and instrumentation. Instead of showing
specific causes of software aging, the SWARE approach aims to
provide an overview of system status during and after software
aging effects.

The paper [37] shows a study of software aging and rejuve-
nation in an SOAP-based Servers. The authors ran a variety of
scenarios with different configurations. The adopted approach is
focused on studies of software aging and rejuvenation in
SOAP-based servers. SWARE approach aims to be more generic
and flexible to other types of software.

The paper [38] presents an investigation of software aging
on OpenStack Cloud Computing Platform. The authors used a
testbed which runs OpenStack, Apache and MySQL database.

The presented results show that the MySQL processes present
software aging issues. The authors also used a particular
workload to stress the system and present trend analysis for
resources consumption. The considered workload consists of
sequential operations of start and terminate VM instances. We
also adopted a sequential workload in our case study. However,
the SWARE approach also comprises the observation of soft-
ware aging problems and software rejuvenation effectiveness.
The paper [39] presents a comprehensive approach to inves-
tigating software aging and rejuvenation in a J2EE Application
Server. The authors used a hierarchical approach to submit
software rejuvenation in the system. The adopted methodology
has two main steps: (i) software aging tests and (ii) application
of the hierarchical software rejuvenation mechanism. Our
experiments also comprise software aging and rejuvenation
phases. But, we also include the Wait Phase to highlight effects

caused by software aging bugs activation.
It is important to highlight that the present paper is an

improved version of our previous publication [40].

VI. CONCLUSIONS AND FUTURE WORKS
This paper presented the SWARE approach. The SWARE

is a comprehensive approach to investigating aging symptoms
and rejuvenation effectiveness on software systems. SWARE
approach has three phases aiming to highlight software aging
effects symptoms and rejuvenation effectiveness. (I) Stress
Phase, when software aging workload reaches system to stress
investigated component. (II) Wait Phase, to perceive indicators
of software aging. (III) Rejuvenation Phase, which aims to detect
rejuvenation action effectiveness on the environment.

Section IV presents a case study to validate SWARE ap-
proach. This case study aims to investigate KVM software aging
and also to study VM Live Migration effectiveness as a software
rejuvenation action. The investigation shows results of software
aging symptoms on KVM. Wait Phase highlights software aging
effects on resources consumption and quality of service of a Web
Server. Finally, after VM Live Migration it is possible to notice
that degradation effects clean-up.

The major contributions of this paper is a generic approach
to software aging and rejuvenation effectiveness investigation.
The case study proposed was a Cloud Computing environment.
But, the approach phases guidelines can be reproduced in other
types of software systems. This paper also presents (as a case
study of the approach) a software aging and rejuvenation study
on VM Live Migration as software rejuvenation for KVM
hypervisor. The results of proposed case study show practical
results of VM live migration effectiveness as rejuvenation for
KVM.

The approach does not quantify software aging effects.
With the lack of statistical techniques on data, it is hard to define
software aging failure time and a proper rejuvenation schedule.
The approach may require a substantial time to produce expected
results. The Stress phase may not produce expected results on
software aging bugs activation.

Future research directions aim to investigate further SWARE
approach application on different scenarios as Software- Defined
Networking, Network Function Virtualization, Virtu- alized
Containers and Fog Computing. Other research lines seek to
improve approach adding multiple component software aging
investigations.

REFERENCES

[1] CISCO, “Cisco global cloud networking survey summary and
analysis of results worldwide results.” CISCO, Tech. Rep., 2012.

[2] CDW, “Cdw’s cloud 401 report,” CDW, Report, 2015.

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

37

[3] W. Kim, “Cloud computing: Today and tomorrow.” Journal
of object technology, vol. 8, no. 1, pp. 65–72, 2009.

[4] J. Araujo, R. Matos, P. Maciel, and R. Matias, “Software aging
issues on the eucalyptus cloud computing infrastructure,” in
Systems, Man, and Cybernetics (SMC), 2011 IEEE International
Conference on. IEEE, 2011, pp. 1411–1416.

[5] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker,
“Experimental evaluation of software aging effects on the
eucalyptus cloud computing infrastructure,” in Proceedings of the
Middleware 2011 Industry Track Workshop. ACM, 2011, p. 4.

[6] R. Matos, J. Araujo, V. Alves, and P. Maciel, “Characterization of
software aging effects in elastic storage mechanisms for private
clouds,” in Software Reliability Engineering Workshops (ISSREW),
2012 IEEE 23rd International Symposium on, 2012, pp. 293–298.

[7] M. Torquato, J. Araujo, and P. Maciel, “Estudo experimental de en-
velhecimento de software em nuvens kvm/opennebula: Live migra-
tion como mecanismo de suporte ao rejuvenescimento de software,”
in XIII Workshop em Clouds e Aplicac¸o˜es in conjunction with
33rd Brazilian Symposium on Computer Networks and Distributed
Systems (SBRC2015). Vito´ria, ES, Brazil: Universidade
Federal do Esp´ırito Santo (UFES), may 2015, pp. 1–14.

[8] I. Umesh and G. N. Srinivasan, “Dynamic software
aging detection- based fault tolerant software rejuvenation
model for virtualized en- vironment,” in Proceedings of
the International Conference on Data Engineering and
Communication Technology. Springer, 2017, pp. 779– 787.

[9] D. L. Parnas, “Software aging,” in Proceedings of the
16th international conference on Software engineering.
IEEE Computer Society Press, 1994, pp. 279–287.

[10] M. Grottke, R. Matias, and K. S. Trivedi, “The
fundamentals of software aging,” in Software Reliability
Engineering Workshops, 2008. ISSRE Wksp 2008. IEEE
International Conference on. IEEE, 2008, pp. 1–6.

[11] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software
rejuvena- tion: Analysis, module and applications,” in Fault-
Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-
Fifth International Sympo- sium on. IEEE, 1995, pp. 381–390.

[12] J. Araujo, V. Alves, D. Oliveira, P. Dias, B. Silva, and P.
Maciel, “An investigative approach to software aging in android
applications,” in Systems, Man, and Cybernetics (SMC), 2013
IEEE International Conference on. IEEE, 2013, pp. 1229–1234.

[13] Y. Qiao, Z. Zheng, and F. Qin, “An empirical study of
software aging manifestations in android,” in Software
Reliability Engineering Workshops (ISSREW), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 84–90.

[14] J. Araujo, F. Oliveira, R. Matos, M. Torquato, J. Ferreira, and
P. Maciel, “Software aging issues in streaming video player,”
Journal of Software, vol. 11, no. Jun 2016, pp. 554–568, 2016.

[15] F. Alencar, M. Santos, M. Santana, and S. Fernandes,
“How software aging affects sdn: A view on the controllers,”
in Global Information Infrastructure and Networking
Symposium (GIIS), 2014. IEEE, 2014, pp. 1–6.

[16] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Aging-
related bugs in cloud computing software,” in Software
Reliability Engineering Workshops (ISSREW), 2012 IEEE
23rd International Symposium on. IEEE, 2012, pp. 287–292.

[17] D. Cotroneo, R. Natella, R. Pietrantuono, and S.
Russo, “A survey of software aging and rejuvenation
studies,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 10, no. 1, p. 8, 2014.

[18] M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Araujo,
“Availability study on cloud computing environments: Live
migration as a rejuvena- tion mechanism,” in Dependable
Systems and Networks (DSN), 2013 43rd Annual IEEE/
IFIP International Conference on, 2013, pp. 1–6.

[19] M. Melo, J. Araujo, R. Matos, J. Menezes, and P. Maciel,
“Comparative analysis of migration-based rejuvenation schedules
on cloud availabil- ity,” in Systems, Man, and Cybernetics (SMC),
2013 IEEE International Conference on, Oct 2013, pp. 4110–4115.

[20] M. D. E. T. Melo and P. R. M. Maciel, “Modelos de
disponibilidade para nuvens privadas: Rejuvenescimento de

software habilitado por agendamento de migrac¸a˜o de vms,” 2014.
[21] K. Vaidyanathan and K. S. Trivedi, “Extended classification

of software faults based on aging,” in Fast Abstract, Int.
Symp. Software Reliability Eng., Hong Kong, 2001.

[22] N. A. Valentim, A. Macedo, and R. Matias, “A
systematic mapping review of the first 20 years of
software aging and rejuvenation research,” in Software
Reliability Engineering Workshops (ISSREW), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 57–63.

[23] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi,
“A methodology for detection and estimation of software aging,”
in Software Reliability Engineering, 1998. Proceedings. The
Ninth International Symposium on. IEEE, 1998, pp. 283–292.

[24] R. Matos, J. Araujo, V. Alves, and P. Maciel, “Experimental
evaluation of software aging effects in the eucalyptus elastic
block storage,” in Systems, Man, and Cybernetics (SMC), 2012
IEEE International Conference on. IEEE, 2012, pp. 1103–1108.

[25] D. Mosberger and T. Jin, “httperf—a tool for measuring
web server performance,” ACM SIGMETRICS Performance
Evaluation Review, vol. 26, no. 3, pp. 31–37, 1998.

[26] J. T. J. Midgley. (2017) Xenoclast - autobench.
[Online]. Available: http://www.xenoclast.org/autobench/

[27] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation
- Volume 2, ser. NSDI’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 273–286. [Online]. Available:
ht tp : / /d l . acm.org /c i t a t ion .c fm?id=1251203 .1251223

[28] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling
and analysis of software rejuvenation in a server virtualized
system with live vm migration,” Performance Evaluation,
vol. 70, no. 3, pp. 212 – 230, 2013, special Issue on Software
Aging and Rejuvenation. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0166531612000934

[29] M. Mitchell, J. Oldham, and A. Samuel, Advanced
Linux Programming, ser. Landmark Series. New
Riders, 2001. [Online]. Available: http://books.
g o o g l e . c o m . b r / b o o k s ? i d = o R q q A V y X j w A C

[30] M. Torquato, H. Mello, L. Torquato, J. Araujo, and E. Guedes,
“Utilizac¸a˜o de scripts para monitoramento de sistemas linux:
Abordagem para criac¸a˜o de relato´rios e gra´ficos com
ferramentas open-source,” in VI Workshop de Software Livre
(FREEBASE), na Escola Regional de Computac¸a˜o Bahia
- Alagoas - Sergipe (XV ERBASE), 2015, pp. 21– 30.

[31] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi,
“Analysis of software aging in a web server,” Reliability,
IEEE Transactions on, vol. 55, no. 3, pp. 411–420, 2006.

[32] R. Matias, P. A. Barbetta, K. S. Trivedi, and P. J.
Freitas Filho, “Accelerated degradation tests applied
to software aging experiments,” IEEE Transactions
on reliability, vol. 59, no. 1, pp. 102–114, 2010.

[33] L. Li, K. Vaidyanathan, and K. S. Trivedi, “An approach
for estimation of software aging in a web server,” in
Empirical Software Engineering, 2002. Proceedings. 2002
International Symposium n. IEEE, 2002, pp. 91–100.

[34] R. Matias Jr and J. Paulo Filho, “An experimental study on
software aging and rejuvenation in web servers,” in Computer
Software and Ap- plications Conference, 2006. COMPSAC’06.
30th Annual International, vol. 1. IEEE, 2006, pp. 189–196.

[35] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
“Software aging analysis of the linux operating system,”
in Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on. IEEE, 2010, pp. 71–80.

[36] R. Matias, I. Beicker, B. Leit a˜o, and P. R. Maciel, “Measuring
software aging effects through os kernel instrumentation,”
in Software Aging and Rejuvenation (WoSAR), 2010 IEEE
Second International Workshop on. IEEE, 2010, pp. 1–6.

[37] L. Silva, H. Madeira, and J. G. Silva, “Software aging
and rejuvenation in a soap-based server,” in Network
Computing and Applications, 2006. NCA 2006. Fifth IEEE

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)

38

International Symposium on. IEEE, 2006, pp. 56–65.
[38] C. Melo, J. Araujo, V. Alves, and P. Maciel, “Investigation

of software aging effects on the openstack cloud computing
platform,” Journal of Software, vol. 12, no. 2, pp. 125–138, 2017.

[39] H. Meng, X. Hei, J. Zhang, J. Liu, and L. Sui, “Software
aging and rejuvenation in a j2ee application server,” Quality and
Reliability Engineering International, vol. 32, no. 1, pp. 89–97, 2016.

[40] M. Torquato, P. Maciel, J. Araujo, and I. Umesh, “An approach
to investigate aging symptoms and rejuvenation effectiveness
on software systems,” in Information Systems and Technologies
(CISTI), 2017 12th Iberian Conference on. IEEE, 2017, pp. 1–6.

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017

SWARE: An approach to support software aging and rejuvenation experiments

Matheus D’Eça Torquato de Melo et al (p. 31 - 38)

