
25

The Use of Microtasks in Crowdsourcing 
Software Development

William Simão de Deus
Federal University of Technology - Paraná 

(UTFPR), Brazil
william_s94@hotmail.com

José Augusto Fabri
Federal University of Technology - Paraná 

(UTFPR), Brazil
fabri@utfpr.edu.br

Abstract — Crowdsourcing (CS) is a distributed software 

de- velopment model in which small activities (or microtasks) of 

design, development,  and  tests  are  developed  by  employees  by 
an online platform. Due to the possibility of aggregating specialists, 
reducing time and costs, companies are applying CS in their software 
development projects. However, there are still gaps in the literature 
about microtasks, there are few studies focused on the theme and the 
lack of taxonomy, generating several management challenges. In this 
form, it was conducted  an analysis of 14485  microtasks  recorded  
on  a  CS  platform  to investigate microtasks in the  development  of  

CS  software. As results demonstrated a set of considerations about 

the use     of microtasks, the risks and the impacts of the microtasks 
in      CS projects. Finally, the benefits and percentage of successful 
completion of each microtask were also   verified.

Keywords – Microtasks; Crowdsourcing; Software  Development

I. INTRODUCTION
Crowdsourcing (CS) is a model of task development and 

problem-solving based on the contribution of a large group   of 
people [1]. Several areas have adopted the CS to optimize results, 
in this form, CS quickly becomes a model for the realization of 
services, obtaining ideas and, innovation source of for contents 
[2]. Recently, CS has been applied to the software development 
using design, development or testing tasks for people who are 
globally dispersed   [3].

CS software development has become a well-established 
approach and is currently finding strong support due to the 
creation of CS platforms dedicated to the industrial and 
productive software sector [4]. In  this  way,  the  literature  
has been constantly updated with publications to understand 
the benefits, challenges, and configuration of CS software 
development [3], [5], [6]. Because of this scenery, L’Erario     et 
al. [7] presented the results of CS teaching and learning among 
undergraduate students. According to the authors, the distributed 
development paradigm is being updated for CS and future 
professionals in the area of software development need to learn 
this knowledge.

Despite the encouraging scenario on the industrial trend and 
the academic interest of CS software development, there is still 
a gap related to CS activities (popularly known as microtasks). 
Microtasks are simple CS activities with a short duration time 
that can be paralleled [8]. Thus microtasks employ reduced 
time and effort, in addition to a relatively low development 
cost [9]. However, although they are simple, there is a paucity 
of concentrated studies on the subject of microtasks in software 
development CS [10].

Krieger et al. [11] cite that microtasks represent a portion 
of the complexity in developing CS software projects. Because 
microtasks concentrate small portions of work, CS projects tend 
to have a lot of microtasks, and thus may present difficulties 
for the development and coordination of work [6]. In addition, 
there is difficulty in identifying what effectively is a microtasks 
and what its influence on software projects [5]. The lack of 
focused studies on the subject of microtask poses several 
challenges for the application of CS. According to Tranquilini 
et al. [12], online platforms end up accepting different types of 
microtasks and can not establish a degree or factor that classifies 
the difficulty of executing a microtask. In addition, the literature 
itself concentrates many terminologies on microtask, usually, 
there are works that adopt the term “micro-task” [13] or “micro 
task” [14]. In addition, there are authors who treat only as  “CS  
activities”  or  “tasks”  [15], and even the term “macro-task” 
has already been  adopted [16]. Although all works focus on 
the same object of study, a common taxonomy of the term is  
lacking.  In  order  to avoid parameterization disorders, the term 
“microtask” it was adopted in this study because it represents the 
most widely used term in the academic  world.

Based on the previously explicit context, the objective of 
this work it was to analyze how microtasks are being applied 
in the development of CS software, empirically verifying its 
use. For this, we conducted a statistical analysis on a data set 
consisting of 14485 microtasks extracted from a CS software 
development platform. In the analysis, it was investigated the 
way of application in software projects, the main challenges, and 
the relation that the configuration of the CS implies on   the 
microtask

To  achieve the goal outlined, this study it was organized    
in six sections. The first section contextualized the theme, 
evidenced its importance and the gaps of the analyzed area.   In 
the second section, a review is presented on the CS, microtasks 
and the platform used for extracting the data set. The third 
section presents a reflection on the work synergistic to this study. 
To elucidate the purpose of  this  study,  the  fourth  section  
demonstrates  the  questions  investigated. The data extraction 
process and the performed analysis are found in the fifth section. 
The final considerations of the study and the limitations of the 
selected approach are presented in the sixth section.

II. CROWDSOURCING
The term CS it was coined in 2006 by Howe [1] after 

analyzing how various organizations were developing their 

Alexandre L’Erario
Federal University of Technology - Paraná 

(UTFPR), Brazil
alerario@utfpr.edu.br



26

products. According to the author, the organizations were 
outsourcing activities to their own audience through an open 
call. Therefore, many areas have benefited from this approach, 
and software development has concentrated benefits due to  the 
use of specialists, cost reduction and parallelization of activities 
[2]

According to Mao et al. [3], CS has become a new approach 
to software development that empowers online developers 
to develop short, independent activities proposed by a leader. 
Hosseini et al. [17] presented that the CS configuration uses four 
bases:

• Crowdsourcer: Leader of the project, your responsi- 
bilities are to manage, organize and coordinate project 
collaborators and deliverables. It is your work to keep   the 
project intact.

• Crowd: Set consisting of anonymous participants. The crowd 
represents a heterogeneous crowd that is scattered globally. The crowd’s 
responsibility is to develop the tasks proposed by the crowdsourcer.

• Platform: It is an online system that allows crowdsourcer 
to coordinate the activities and crowd of the project. The platform is 
responsible for providing information about the project, providing 
communication between the crowd and crowdsourcer, and identifying 
the contributions of each collaborator of the  crowd.

• Microtask: It is an independent and atomized portion of 
work. In CS, a microtask represents a software design, development, or 
testing activity. A microtask is registered by the crowdsourcer on a CS 
platform and should be developed by the crowd.

A. Microtasks
The microtasks represent the most important link in CS, 

they are responsible for uniting the crowd, the platform, and the 
leader. The great innovation of the use of microtasks in software 
development resides in the atomization of the work  in portions 
that employ the minimum of effort and time in     its conclusion 
[8]. Microtasks can be represented by a similar concept of 
division of labor into small   tasks

Microtasks represent a promising area of research because 
of the gaps that are perceived in the literature, this is reflected by 
the absence of a taxonomy on the microtask (microtask, micro-
task, micro-task, etc.) [6], [18], [19]. Although all the authors 
cited above address the same theme, none explicitly define the 
term in common  mode.

 
B. Platform
To conduct this work an extensive analysis it was performed 

on a set of microtasks. The set of microtasks used it was ex- 
tracted from an online platform dedicated to the development 
of CS software. Due to strategic factors, the platform did not 
authorize its identification, in this way it will be presented in this 
study as platform  X.

The platform X works in the CS  software  development 
area and has a large community  of  designers,  developers, and 
enthusiasts in the area. The platform daily registers  almost 20 
microtasks. The value of the completion of each microtask is 
fluctuating, and unit microtasks are found worth pennies of 
dollars to projects with thousands of microtasks estimated at 
prices in excess of ten thousand dollars. This value is decided 
solely by crowdsourced, however,  in order  to minimize risks the 
platform X has complex mechanisms    to block values/activities 
diverging from reality. Due to the portability of the microtasks, 
multinational companies are recently allocating their projects on 
the X platform to achieve economic and temporal benefits.

The platform X has a programmable interface that makes   
it possible to access the registered microtasks. The interface 

provided pure text based responses that were tabulated in elec- 
tronic sheets. The data thus captured were treated using three 
methods of analysis: Manual, Computational, and  Statistics.

III. SIMILAR WORKS
The literature has a set of works with results close to those 

obtained in this research. Thus, the most current and relevant 
studies for an analysis were selected. The first work it was 
developed by LaToza and Hoek [18] (SW01) and presented a 
view on CS development, with emphasis on the application of 
microtasks. The authors conducted an analysis and highlighted 
the major gaps in the area that require further studies. One of 
the limitations perceived in the work is the theoretical approach, 
there being no quantification of data or consultation of specialists.

The second work it was developed by Mao et al. [20] 
(SW02) and highlighted a model  of  recommendations  for  the 
development of CS activities. This work it was validated through 
experimentation and demonstrated  practical  results of its 
approach. However, the work focused on larger CS development 
activities known as tasks or macro  tasks  and may offer serious 
limitations when applied to the concept of microtasks.

TABLE I: COMPARISON OF RELATED  WORK

As shown in Table 1, the first work (TR01) did not validate 
its conjectures with a group of experts or data quantification. 
While  in  the  second  study  (TR02)  the  authors  did  not use 
the microtask-focused approach. Finally, the limitation of this 
study is fixed by using only one platform for data    extraction.

IV. RESEARCH QUESTIONS

A. Crowdsourcing Software Development and Microtasks
The literature presents gaps on the effective way in which 

microtasks are applied in software development [18]. Several 
studies highlight the need to understand how the development 
of CS occurs through the microtasks [6], [21]. Based on this 
scenario, the first question investigated by this study refers to 
“How are microtasks being applied in the development of CS 
software?”. To analyze this, it was verify the structuring, ap- 
plication steps in software projects and technologies employed 
in the microtasks.

B. Success and Failure
According to Naik [22], software projects in a traditional 

and distributed way tend to be complex due to several factors. 
However, when dealing with CS development a gap persists 
about which are the main reasons that make the development of 
a microtask unworkable. Based on this context, we postulate the 
second research question seeking “What are the main reasons 
for failure found in microtasks that make a CS project unfeasible 
or complex?” To answer this question we check the index of 
success and failure found in the microtask and analyze the types 
of detected  failures.

C. Crowdsourcing and Microtasks
The last issue of this study is to advance the state of the  

art on the relationship between CS and microtasks. For this, 
we select two incipient aspects of the literature: i) “how the  
CS configuration affects the microtasks?”. In this way, we 
investigate how the size of the crowd impacts the microtasks 

The Use of Microtasks in Crowdsourcing Software Development

William Simão de Deus et al (p. 25 - 30)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017
                                                                                                                                                                                                                                                                                                            



27

and the coordination process [5], [6]. And it was analyzed the 
“what is the complexity of CS projects?”, helping to investigate 
how total microtasks influence the CS project [18].

V. ANALYSES
To conduct the analyses of  this  paper,  a  data  set  based 

on 14485 microtasks extracted from the platform X it was 
used. The microtasks were registered between 12/31/2011 and 
12/15/2016 (maximum period allowed for data extraction from 
the programmable interface of the platform X). The data were 
tabulated in electronic sheets and from there they received three 
modes: manuals (grouping and ordering), statistics (use of trend 
equations) and computational (reading and analyzing from 
algorithms).

A. How microtasks are being applied in the development 
of CS software?

CS can have two  modes:  collaborative  and  competitive. 
In the  collaborative  mode,  the  crowd  submits  solutions  
to a particular problem and the crowdsourcer selects which 
solutions will be accepted. Already in the competitive mode, is 
considered champion the first submission made and approved. 
The percentage of microtasks according to CS mode is shown 
in Figure 1.

 
Figure 1: Crowdsourcing Mode in  Microtasks

The collaborative CS demonstrates a greater use of mi- 
crotasks. This value is amplified by the way microtasks are 
categorized. Platform X provides a set of 14 categories of mi- 
crotasks: A1 competion (unit test), A3 Competition (desktop), 
codification, correction, creation, definition, development, di- 
agram, first to finish, planning, requirements especification, test, 
test scenarios, and U2 competition  (prototype).

Figure 2: Categories of  Microtasks

The categories of microtasks it was presented in Figure 
2, the three main categories occupy more than 70% of the set   
of microtasks analyzed. The first to finish category has almost 
30 %. The categories codification and A1 competition have, 
respectively, 22.58% and 22.48%. The other categories did  not 
exceed 7% of incidence. To deepen the analysis on each category, 
it was identified in which stages of a project the different 
categories are being adopted. For this, the approach proposed by 
Dwarakanath et al. [4] that defined five steps in a CS:

• Analysis: requirements of a CS  project
• Desing: prototypes, design and  layout
• Development: coding routines, and/or bugs
• Test: test execution and error  correction
• Integration: union of microtasks
The microtask categories of Figure 2 were also analyzed and 

generated in relation to the steps set forth above. The complete 
relationship between step x category is shown in Figure 3 by 
means of an area  chart.

It was noticed that the integration stage is still little explored 
by the microtasks, being used only in the category first to fin- 
ish. Microtasks facing the requirements stage are maturing and 
have been explored in three categories first to finish, diagram, 
and requirements specification. The development stage it  was

 Figure 3: Microtasks and Steps in Crowdsourcing Software 
Development

represented in five categories first to finish, codification, A1 
competition, development, and A3 competition. The the test 
step first to finish, correction, A1 competition, tests, and test 
scenarios. Finally, it was identified the design activities of a 
project first to finish, U2 competition, planning, definition, and 
creation.

After these analyzes, it was also identified which technolo- 
gies were used in microtasks, in total, 8 technologies were 
identified and classified in:

• Service: microtasks for existing  projects.
• Mobile: microtasks that employ mobile  technology.
• Web: microtasks for new web  projects.
• Operating System: microtasks applied at startup hard- 

ware.
• Cloud: storage microtasks in the  cloud.
• Social Network: microtasks about development or 

testing on social networks.
• API: microtasks that offer request and responses based  

on JSON or XML  format.
• Other: microtasks targeted technologies that do not fit 

into any of the previous  categories.
The graph on the technologies used in the microtasks is 

presented in Figure  4:

Figure 4: Microtask technologies

The Use of Microtasks in Crowdsourcing Software Development

William Simão de Deus et al (p. 25 - 30)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017
                                                                                                                                                                                                                                                                                                            



28

About 28% of microtasks are service-based, while mobile 
and web technologies represent respectively 20% and 19%. There 
is also an application of microtasks for Operating Systems with 
18% and Cloud Storage 10%, enclosing the five most commonly 
used technologies. The detailing of such tech- nologies has 
had a great influence on microtasks using mobile technologies 
(Android and iOS), browser (JavaScript, CSS, Angular.js, Node.
Js, Jquery, HTML, etc.) and programming languages (Java, C#, 
and .Net). The complete graph with all the detailed technologies 
is presented in Figure 5

Figure 5: Details of the Microtasks  Technologies

B. What are the main reasons for failure found in 
microtasks that make a CS project unfeasible or   complex?

To initiate  the  analysis  of  the  main  reasons  for  failure, 
a similar approach it was  applied  to  Mao  et  al.  [20].  In  
this approach, the microtasks were added in a computational 
vector. This vector it was traversed several times by means   of 
a search algorithm. As a result, at the end of processing,   the 
algorithm exhibited the patterns most commonly used in 
microtask descriptions. Thus, the three main forms of support 
for the development of microtasks were identified: links to 
access complementary documentation, project code repository, 
and asynchronous e-mail communication. However, there is a 
large discrepancy in the use of each resource. Just over half the 
microtasks, about 56.55% dedicated the declaration of some 
external access link to assist the crowd in the development of 
the microtasks. While only 0.37% of the microtasks have some 
data repository and only 0.3% of the microtasks had some 
contact email address. One of the reasons given for failures can 
be drawn from the significant 32.26% share of microtasks that 
do not have any of the above-described types of aid. All support 
variations are found in Figure  6:

Figure 6: Microtasks Description

Supported by the chaotic scenario in which almost 1/3 of  
the microtasks do not have any type of support detected, the 
relation of success and failures of execution it was explored. 
Screening revealed the following classifications:

• No submissions: microtask without any crowd submis- 
sions;

• Canceled by client: microtasks canceled by crowd- 
sourcer;

• Canceled on review: microtasks that have been 
requested to be canceled;

• Impracticable: microtasks not feasible due to their 
com- plexity and time available;

• Winner Indifferent: Contributors who have accepted 
submission and have not applied for the   award;

• No records: microtasks without any participant  
records.

Despite the complexity of using CS and the lack of support 
in microtask descriptions (showed in Figure 6), 86.07% of    the 
microtasks analyzed were successful in development. The main 
reason for the cancellation it was that there were no submissions 
(6.99%), followed by the cancellation of client (3.27%). The 
other reasons do not exceed 2% incidence. The percentage of 
all classifications on failure reasons can be viewed by means of 
Figure  7.

Figure 7: Success x  Failure

C. Crowdsourcing and Microtasks
1)	 How	 the	 CS	 configuration	 affects	 the	 microtask: To 

investigate the connection between CS  and  microtasks,  a step it 
was begun analyzing the relationship between total submissions 
and crowd size. To investigate this cause-and- effect relationship, 
a mathematical equation it was used to generate a linear trend 
graph based on the following   formula:

In which S represents the sum of microtask submissions, 
given in the order of i (not canceled) and j (grouped by total 
records). R represents the sum of the size of the crowd given by 
the i grouping. Therefore, the final ratio of the equation groups 
and determines the average trend of submissions by  the size of 
the  crowd.

Initially, it was noticed that CS is a homogeneous trend: as 
the total number of participants increases, the total number  of 

Figure 8: The relationship between the size of the crowd and the 
total of  submission

submissions increases (see the first graph of Figure 8). How- 
ever,  crowds with more than 100 participants demonstrated  

The Use of Microtasks in Crowdsourcing Software Development

William Simão de Deus et al (p. 25 - 30)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017
                                                                                                                                                                                                                                                                                                            



29

the opposite, exhibiting a heterogeneous trend. This led to the 
conduction of a new analysis by applying as a third variable the 
ratio of participation percentage. In this way the results provided 
by equation (1) were submitted to a new analysis, using a 
constant N referring to the   percentage:

Where f (p) represents the division of the total submission 
by the size of the crowd multiplied by N = 100. Thus, it was 
identified that crowd with fewer participants concentrate a 
higher rate of participation. This trend decreases as the crowd 
increases to a maximum size of 50 participants. Microtasks 
that were developed by a crowd with more than 50 participants 
represent a complex and heterogeneous tendency. For, despite 
the increase in labor power, it is not reflected in participation. 
The complete graphical representation of crowd size and total 
submission is found in the lower graph of Figure 9.

Figure 9: The detail of the percentage of participation accord- ing 
to the size of the crowd and the total of submissions

2)	 What	is	the	complexity		of		CS		projects:	 To  analyze  
this question, a personalization of the Saremi and Yang [23] 
approach it was applied to parameterize the complexity of  CS 
projects. In the original approach, the projects are classified into 
simple (<100 microtasks) and complex (>100 microtasks). To 
facilitate the understanding and data range, chose to classify as 
simple the projects with up to 50 microtasks and to establish 
a new interval, between 50 and 100, for projects with medium 
complexity.

The figure 10 demonstrates the complexity of the projects 
by microtasks, as can be seen, the projects considered   simple 
have an average of 35 microtasks. However,  the median is   
set at 10 microtasks. Medium projects, however, have a more 
heterogeneous dispersion, and tend to retain about 63 micro- 
tasks. However, the complex projects have a heterogeneous 
variation, grouping between 100 and 285 microtasks. Few 
projects have dissonant values, above 300 microtasks. Most 
complex projects, however, have about 110  microtasks.

To complement the answer on the complexity of the 
CS projects, the time spent to complete the microtasks it was 
analyzed. Few microtasks were completed in less than 24 hours, 
not reaching even 1% incidence. Meanwhile, micro- tasks 

completed in one day totaled only 2.11%. Most of the microtasks 
were completed in two days of work, totaling 41.22%. The rest of 
the microtasks were completed between   3 or more days and did 
not exceed 10% incidence. However, the microtasks completed 
in 30 days showed a high incidence. In the authors’ perception, 
this fact is because the platform X provided a deadline for the 
conclusion of the microtasks, and with this, some crowdsourcers 
may have randomly defined and/or platform X has done it 
automatically. The graph 11 shows the complete list of days used 
for the conclusion of microtasks.

Figure 11: Microtasks Complexity in  Days

VI. CONCLUSIONS
In this paper, were analyzed a set of data formed by 14485 

microtasks. This data set it was based on the maximum number 
of microtasks provided by the X platform programmable 
interface. The analysis conducted in this work demonstrated 
that the collaborative microtasks of CS represent a greater 
incidence when compared to competitive microtasks. However, 
both modalities are being adopted in all stages of a CS software 
project. In addition, the three most widely used technologies in 
microtasks are the web, mobile, and services, and the three main 
reasons for microtask failures are the lack of aid in the description, 
lack of submissions and cancellations by the customer. It has 
also been identified that crowd size configuration influences 
submissions, and it has been found that crowds with up to 50 
participants are most active in sub- missions. Already the larger 
crowds present a heterogeneous trend line of submissions. It was 
found that simple projects have an average of 35 microtasks, 
while medium and complex projects have, on average, 63 and 
105 microtasks, respectively. Finally, most microtasks were 
completed in two days of work.

The original study it was developed by [24] and presented   
a set of considerations on the use of microtasks and the 
development of CS software. The original study is in the 
Portuguese language. This version represents an update of the 
original study, because of that, the literature consulted it was 
revised, several sentences and paragraphs were rewritten and 
the references updated for new works published, finally, all   its 
content it was translated into English. In addition, this extensive 
version demonstrated an important graph on the detailing of the 

Figure 10: Microtasks Complexity

The Use of Microtasks in Crowdsourcing Software Development

William Simão de Deus et al (p. 25 - 30)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017
                                                                                                                                                                                                                                                                                                            



30

technologies present in microtasks and another graph about the 
days of work in   microtasks.

The development of a study always presents limitations, it 
is emphasized that only a CS platform it was used to  conduct the 
analysis. In addition, the data set it was limited to the maximum 
size allowed by the X platform programmable interface.

As future work, there is interest in conducting analysis to 
verify and deepen the challenges of microtasks. One possible 
contribution is to treat the flow of microtasks and establish 
metrics to assist in their  management.

REFERENCES

[1]    J. Howe, “The rise of crowdsourcing,” Wired 
magazine, vol. 14, no. 6,  pp. 1–4, 2006.

[2]    A. Benedek, G. Molnar, and Z. Szuts, “Practices of crowdsourcing 
in relation to big data analysis and education methods,” in 
Intelligent Sys- tems and Informatics (SISY), 2015 IEEE 
13th International Symposium on, Sept 2015, pp.  167–172.

[3]    K.  Mao,  L.  Capra,  M.  Harman,  and  Y.   Jia,  “A  survey  of  the     use of 
crowdsourcing in software engineering,”  Journal  of  Systems  and 
Software, vol. 126, pp. 57 – 84, 2017. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0164121216301832 

[4]      A.  Dwarakanath,  U.  Chintala,  N.  C.  Shrikanth,  G.  Virdi,  A.    
Kass, A. Chandran, S. Sengupta, and S. Paul, “Crowd 
build: A methodology for enterprise software development using 
crowdsourcing,” in 2015 IEEE/ACM 2nd International Workshop 
on CrowdSourcing in Software Engineering, May 2015, pp.  8–14.

[5]    M. Hosseini, A. Shahri, K. Phalp, J. Taylor, R. Ali, and F. Dalpiaz, 
“Configuring crowdsourcing for requirements elicitation,” in 
2015 IEEE 9th International Conference on Research Challenges 
in Information Science (RCIS), May 2015, pp.  133–138.

[6]    W. S. Deus, R. M. Barros, and A. L’Erario, “Um modelo para 
o gerenciamento do crowdsourcing em projetos de software,” 
in 2016 I Workshop sobre Aspectos Sociais, Humanos e 
Econômicos de Software (I WASHES), Oct 2016, pp.  1–10.

[7]    A. L’Erario, J. A. Fabri, R. H. C. Palácios, W. Godoy, and 
W. S. de Deus, “Ensino de desenvolvimento crowdsourcing 
em cursos de graduação: Um estudo comparativo,” 
Iberian Conference on Information Systems and 
Technologies (CISTI), vol. 1, no. 12, pp. 685 – 690,    2017.

[8]    T. D.  LaToza,  W.  B.  Towne,  C.  M.  Adriano,  and  A.  van  
der   Hoek, “Microtask  programming:  Building  software  with  
a  crowd,”  in   Proceedings   of   the   27th   Annual   ACM   
Symposium    on    User  Interface  Software  and  Technology,  
ser.  UIST   ’14.   New York, NY, USA: ACM, 2014, pp. 43–54. 
[Online]. Available: http://doi.acm.org/10.1145/2642918.2647349

[9]    T. D. LaToza and A. V. D. Hoek, “Crowdsourcing in software 
engi- neering: Models, motivations, and challenges,” 
IEEE Software, vol. 33, no. 1, pp. 74–80, Jan  2016.

[10]    K.-J. Stol and B. Fitzgerald, “Researching crowdsourcing 
software development: Perspectives and concerns,” 
in Proceedings of the 1st International Workshop on 
CrowdSourcing in Software Engineering, ser.  CSI-SE  
2014.     New  York,   NY,  USA:  ACM,  2014,  pp.  7–10.
[Online]. Available: http://doi.acm.org/10.1145/2593728.2593731

[11]    M. Krieger, E. M. Stark, and S. R. Klemmer, “Coordinating 
tasks on the commons: Designing for personal goals, expertise 
and serendipity,” in Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems, ser. CHI ’09. New 
York, NY, USA: ACM, 2009, pp. 1485– 1494. [Online]. 
Available: http://doi.acm.org/10.1145/1518701.1518927

[12]    S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati, 
“Modeling, enacting, and integrating custom crowdsourcing 
processes,” ACM Trans. Web, vol. 9, no. 2, pp. 7:1–7:43, May 
2015. [Online]. Available: http://doi.acm.org/10.1145/2746353

[13]    L. Jiang,  C.  Wagner,  and  B.  Nardi,  “Not  just  in  it  for  the  
money:  A qualitative investigation of workers’ perceived benefits  
of  micro- task crowdsourcing,” in 2015 48th Hawaii International 
Conference on System Sciences, Jan 2015, pp.  773–782.

[14]    U. Hassan, M. Bassora, A. H. Vahid, S. O’Riain, and E. Curry, 
“A collaborative approach for metadata management for internet 
of things: Linking micro tasks with physical objects,” in 9th 
IEEE International Conference on Collaborative Computing: 
Networking, Applications and Worksharing, Oct 2013, pp. 593–598.

[15]    M. Hossain, “Crowdsourcing: Activities, incentives 
and users’ motiva- tions to participate,” in 2012 
International Conference on Innovation Management 
and Technology Research, May 2012, pp.  501–506.

[16]    J. Cheng, J. Teevan,  S. T.  Iqbal, and M. S. Bernstein, 
“Break it down:   A comparison of macro- and microtasks,” 
in Proceedings of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems,   ser.  CHI  ’15.    New  
York,  NY,  USA:  ACM,  2015,  pp.   4061–4064.[Online]. 
Available: http://doi.acm.org/10.1145/2702123.2702146

[17]    M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “The four 
pillars of crowdsourcing: A reference model,” in 2014 IEEE 
Eighth International Conference on Research Challenges 
in Information Science (RCIS), May 2014, pp. 1–12.

[18]    T.  D. LaToza  and A. v.  d. Hoek, “A  vision of crowd development,”      
in 2015 IEEE/ACM 37th IEEE International Conference 
on Software Engineering, vol. 2, May 2015, pp.  563–566.

[19]    M. Hosseini, A. Shahri, K. Phalp, and R. Ali, “Recommendations 
on adapting crowdsourcing to problem types,” in 2015 IEEE 
9th Inter- national Conference on Research Challenges 
in Information Science (RCIS), May 2015, pp.  423–433.

[20]    K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, 
“Developer recommendation for crowdsourced software 
development tasks,” in 2015 IEEE Symposium on Service-
Oriented System Engineering, March 2015, pp. 347–356.

[21]    A.  Suganthy  and  T.  Chithralekha,  “Application  
of crowdsourcing insoftware development,” in 
2016 International Conference on Recent Trends in 
Information Technology (ICRTIT), April 2016, pp.   1–6.

[22]    N. Naik, “Crowdsourcing, open-sourcing, outsourcing 
and insourcing software development: A comparative 
analysis,” in 2016 IEEE Sympo- sium on Service-Oriented 
System Engineering (SOSE), March 2016, pp. 380–385.

[23]    R. L. Saremi and Y. Yang, “Empirical analysis on parallel 
tasks in crowd- sourcing software development,” in 2015 30th 
IEEE/ACM International Conference on Automated Software 
Engineering Workshop (ASEW), Nov 2015, pp. 28–34.

[24]    W. S. de Deus, J. A. Fabri, and A. L’Erario, “The use of 
microtasks in crowdsourcing software development,” in 
2017 12th Iberian Conference on Information Systems 
and Technologies (CISTI), June 2017, pp.   1–6.

The Use of Microtasks in Crowdsourcing Software Development

William Simão de Deus et al (p. 25 - 30)
JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V.3 - N.1 - 2017
                                                                                                                                                                                                                                                                                                            


