SPLIMBo — Developing and Evaluating a
Software Product Line for Cross-Platform IM
Bots

Victor Travassos Sarinho
Laboratorio de Entretenimento Digital Aplicado
Universidade Estadual de Feira de Santana
vsarinho@gmail.com

Abstract— Instant Messaging — IM platforms spread the
communication instant among their users in a fast, low cost and
multimedia way. This paper presents the development and evaluation
process of SPLIMBo, an open source Software Product Line that
allows the production of cross-platform IM bots in a "'write once, run
anywhere" perspective. It is based on a Product Line Architecture
that provides adapters to interact with distinct IM platforms, bot
sessions defined by IM feature configurations, and a relational data
bus able to integrate IM data from deployed adapters and bot sessions.
As evaluation process, the LibrasZap IM game development based on
SPLIMBo was described, and a comparative analysis with available
bot builders was performed. They confirmed the SPLIMBo ability
to build local and configurable bots being available for multiple IM
platforms.

Index Terms—Software Product Line, Instant Messaging,
Cross-Platform IM Bots, IM Games

L. INTRODUCTION

Nowadays, many types of Instant Messaging — IM platforms,
such as WhatsApp [1], Messenger [2] and Telegram [3], are
available to provide a high quality instant communication to the
final user. They offer important innovations in user interaction,
such as real-time communication of multimedia messages
and support of IM bot systems. For bots, they are “simply IM
accounts operated by software that can do anything, such as
teach, play, search, broadcast, remind, connect, integrate with
other services, or even pass commands to the Internet of Things
—TIoT” [4].

Multiple IM APIs are available in a developer perspective
[5]. They allow the production of IM systems able to provide
automated responses for connected IM clients. Some of these
APIs provide exclusive resources for bot development, such
as inline keyboards with callback and URL buttons [6]. Others
do not offer an official protocol documentation and, in case of
WhatsApp, actively discouraged 3rd party implementation of
their protocol [7].

Trying to support this IM API diversity, ChatFuel [8],
Permabots [9], Flowxo [10] and Gupshup [11] present cross-
platform solutions in the cloud to develop IM bots. ChatFuel
provides a bot interface that works as an initial wrapper for
IM platforms, making distinct configurations for the same bot
system. Permabots works with a limited API that redirects
received IM from respective platforms. Flowxo and Gupshup
allow a programmable configuration of cross-platform IM bots,
but with a limited number of interactions per month. In a web

.18

perspective, Imified [12] proposed a web service to host and
run large scale IM bots. Moreover, in a stand-alone perspective,
Zhou et al. [13] proposed a local method and system able to
specify IM bots using state transitions and XML specifications.

This paper presents the production and evaluation process
of SPLIMBo [14], an open source Software Product Line — SPL
[15] able to configure and deploy cross-platform IM bots in a
“write once, run any-where” perspective. To this end, section 2
describes SPLIMBo assets to deploy IM bots. Section 3 presents
the configuration process of IM bots. Section 4 describes the
obtained result of a deployed game using SPLIMBo and a
comparative analysis with available bot builders. Finally, section
S presents the conclusion and future work of this project.

II. THE SPLIMBO PLATFORM

Per Voelter and Groher [16], “the effectiveness of a SPL
approach directly depends on how well feature variability within
the portfolio is managed from early analysis to implementation
and through maintenance and evolution”. Variability
management is “the activity concerned with identifying,
designing, implementing, and tracing flexibility in SPLs” [16],
whose Product Line Architectures — PLA are “designed to
support the variation needed by the products in product lines,
and so making it reconfigurable makes sense” [15]. Beuche and
Dalgarno [17] defined important Domain and Application steps
based on features for SPL. Engineering, such as “structure and
selection for the solution elements of the product line platform”
and the specification of “the needed platform elements (and
additional application elements if required)”.

This section presents PLA elements able to be “structured
and selected” by feature configurations to control the domain
diversity of IM APIs. These PLA elements define the SPLIMBo
platform, being responsible of monitoring IM platforms and
performing IM actions for hosted bots.

A. Monitoring IM Platforms

There are different types of strategies and resources being
used by IM APIs to work with IM data and services, such as:
programming languages (Python, Java, Lua, etc.); IM data
structures; user identification strategies (phone number, internal
ID, Jabber ID); monitoring approaches of incoming messages
(event-oriented, loop-oriented); available support for multimedia
content; and so on. To integrate this collection of features, an
adapter strategy was applied to offer a common set of generic IM

q,'l

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V3 - N2 - 2017

SPLIMBo — Developing and Evaluating a Software Product Line for Cross-Platform IM
Bots

Victor Travassos Sarinho (p. 18 - 23)

functions able to operate different types of IM APIs.

These generic IM functions are responsible to connect with
IM platforms, handle received IMs and monitoring bot responses
to be repassed to the respective IM platform. When executed,
they follow the necessary steps to get credentials with the
associated IM platform, and perform the necessary processing
on sent/received IM data, which can be done by standard loop
or event-driven approach according to the IM API monitoring
strategy.

Fig. 1 illustrates this adaptation life cycle, where the start
method connects to an IM platform to get access credentials, the
handle method receives new messages from IM clients, and the
monitoring method verifies bot responses to send back to the IM
client.

IM Platform
zapserver
WhatsApp [1]
Messenger [2] Queue
Telegram [3]
getfcredentials
IM data
send /Jreceive IM
IM API
IM Adapter
connect
ChatAPI [7] L start()
receive |M
RestFB [18] shandle(IM)
. send IM
Telepot [19] monitaring()

Fig. 1. Adaptation life cycle among IM Adapters, IM APIs and IM
Platforms.

A relational buffer was also designed to represent the data
bus for transmitted IM between deployed adapters and available
platforms. It is basically a Queue table (Fig. 1) composed with
the following fields to be used by IM adapters and hosted IM
bots:

* status — ‘R’ value for received IM and ‘S’ value for IM
to be sent;

* url/—indicates the current IM API for the sent/received
message;

* jidClient and jidServer — identification codes for IM
client and bot system;

* message — transmitted text during an IM conversation;

* data and extension — multimedia content and type of a
transmitted IM;

* dateTime — indicates when the IM was sent from a bot
or received by the adapter;

* dateTimeToSend — previous schedule to send an IM.

B. Performing IM Actions

The SPLIMBo PLA was designed to host different types
of bot configurations able to provide automatic responses for
incoming IMs. For this, each bot is configured by ZapML, an
XML model derived from bot features that represents automated
solutions for IM clients.

ZapML files are loaded by ZapServer, a bot container
that decides which bot configuration must be loaded, hosted
and performed for each received IM. ZapServer applies a
continuous inspection of received IMs in the Queue, evaluating
the conditions to create a new bot context and associate it to a

.

19

new Session. For loaded bots, ZapServer verifies the destination
IM number/id (jidServer) to get an available Session that will be
responsible to evaluate the received IM.

Fig. 2 illustrates this ZapServer process of verifying
received IMs from new clients, hosting new bots, and use
available Session instance to perform received IMs.

|:' Verify received IM in Queue}

naw IM received

[currentS ession := sessions.get(IM.jidClient) ;]

\

<> currentSession == null || currentSession expired

[newSession = new Session(IM.jidClient, IM.jidSewer};J

L

[sessions.put(newSession}:]

Get ZapML config
according to jidServer.
Each created Session
has an associated
Execution instance.

[currentS ession = newSession:]

[Pefform IM according currentSessionJ

=g
Remove IM from Queue

Fig. 2. Hosting process of new IM bots.

With an instantiated Session from a bot configuration, the
next step is to define a representative context for each first IM
received by ZapServer from the same client. For this, Execution
[20] is a graph model of jBPM based on interpretation of the
process definition and the chain of command pattern. Each
Execution is bounded to a ZapML configuration when a new bot
Session is started. It allows the Execution instance to interpret a
ZapML configuration referring to a current XML node in an IM
conversation. For each received IM, Execution stores the current
conversation status, performs the current XML node and decides
the future XML node that will be performed in the next IM client
response.

Fig. 3 illustrates the allocation of Execution resources
(Bot Workflow and Bot Context) together with XML parsing,
IM adapters and relational tables that model the data bus for
transmitted IM. The combination of these structures represents
the proposed SPLIMBo PLA able to support ZapML configs for
multiple IM platforms.

I11. SPLIMBO CONFIGURATION

Textual User Interface — TUI is a common approach to
define human-computer interactions in operational systems and
remote text terminals [21]. Based on prompts and menus [21], it
is broadly applied in modern IM platforms in conjunction with
multimedia and mobile resources.

Feature modeling is atechnique for managing commonalities
and variabilities within a product line [22]. It is used to capture
the results of domain analysis, to facilitate scoping of product
lines, and to provide a basis for automated configuration of
concrete products [22].

Fig. 4 presents the proposed SPLIMBo feature model able to
configure IM bot variants based on TUI interactions. It describes
IM bots as a collection of Option features, such as Menu,
Sequence, Command or HyperText. Each Menu contains lists of
header and footer HyperText features, together with a list of sub-
Option features. Sequence features represent loops of Option

—

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V3 - N2 - 2017

SPLIMBo — Developing and Evaluating a Software Product Line for Cross-Platform IM
Bots

Victor Travassos Sarinho (p. 18 - 23)

features, being able to evaluate conditions when necessary.
Command is a direct action that can be performed by a IM bot,
such as: execute a database routine; send a web request to a
server; or send a HyperText response to the IM client. Command
features can be also defined as Prompt features, waiting for IM
client responses to perform specific actions. Finally, HyperText
features are responsible to send textual and multimedia content
to the IM client, such as image, video, audio, document, etc.

Relational

Qﬂbjy

IM Adapter
ol &
2] 29| =
2| gl 2
2 =| F
IM Maonitor
SQL Script JDBC s
| @
1 N P E
Bot Context
2l @
T~ 72
Bot ‘.r'\:?‘rkFIow jBPM %
|
I~ N
ZapML Interpreter
T
ZaphL Parser XML Parser

Bot Config...

Bot Configl

Bot Config2

Fig. 3. The SPLIMBo Product Line Architecture.

| Menu | | Sequence | | command | | HyperText |
[0.7]
SeqguenceQption
| MenuOption | | FooterHyperText | | Prompt |

Fig. 4. SPLIMBo feature model able to configure IM bot variants.

HeaderHyperText

A. The ZapML Language

ZapML is an XML that specifies textual representations of
TUI responses for IM bots. It is derived from SPLIMBo feature
model, having Menu, Prompt, Command, Sequence, Exec and
hypertexts tags as main XML elements.

Each ZapML response to IM clients is based on tag

evaluation, which defines the current state of a bot in an IM
conversation. For example, when a Menu tag is evaluated,
the IM bot shows the menu options and wait for a IM client
response. If the IM client chose a sub-Menu option, it executes a
new ZapML tag that can be a Command, a Sequence, or even a
new Menu. If a back option is selected, it returns to the previous
tag content. Finally, if the IM client send an invalid option, the
current Menu is executed again showing the same menu options

of the current node.

<zapapp path=".../DemocZap/">
<menu includeBackOption="false">
<text>Cptions: </text>
<gommand description="Hello World" keycode="System.order">
<textrHello World!!!</text>
</ command>
<prompt description="Echo" keycode="System.order"
exechAfterConfimation="echo=8ystem.currentMessage"
confirmationMessage="Echo: System.echo”>
<text>Send a text (V- Back):</text>
</prompt>
</menu>
</zapapp>

Fig. 5. ZapML configuration of the DemoZap example.

Fig. 5 and 6 describes a ZapML example called DemoZap
[20]. It is based on one Menu and two Command tags (the
Menu options) able to send “Hello World!!!” and an echo
as IM response. The initial Menu removes the return option
(includeBackOption = ”false”), shows the “Options:” text, and
present the “1”” and “2” options according to System.order values.
Command submits the “Hello World!!!” text when the option
“I” is selected, returning to the initial Menu after its execution.
Prompt waits the user message and creates a new local variable
called echo with the received text. The confirmationMessage
attribute prepares a message with System.echo value and sends
back to the IM user.

Hi 5

Options:
1 - Hello World!!
2-Echo

Hello World!!!

Options:
1 - Hello World!!
2 -Echo

Send a text (V- Back):

Test123 o140 0
Echo: Test123

Options:
1 - Halla WarlAll

Fig. 6. DemoZap execution on Telegram platform.

B. ZapML Interpretation Process

The startup actions of the ZapML interpretation process can
be resumed in three: 1) instantiate an Execution when an IM
conversation is started; 2) add default variables to the Execution
context (System.jidServer, System.jidClient, etc); and 3) perform
the main Node [20] of the Execution instance.

The main Node refers to a default graph model able

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V3 - N2 - 2017

SPLIMBo — Developing and Evaluating a Software Product Line for Cross-Platform IM
Bots

Victor Travassos Sarinho (p. 18 - 23)

to interpret ZapML tags, that: 1) loads the proposed bot
configuration via ZapML Parser; 2) evaluates the initial tag
(the currentOption) of the bot configuration; 3) sends an IM
based on currentOption and context values (currentMessage,
currentExtension, etc); and 4) wait for user response or directly
decides the new currentOption to be evaluated by the main Node.

The new currentOption is obtained by the tag reference
available in the current Node, which could be the same tag, a
parent tag, a sub-Option tag from a Menu, or a next tag from
a Sequence. After selecting the new currentOption, the process
decides which IM response will be sent, and whether the “ok”
event will be trigger or not. The “ok” event restart the evaluation
process of the current Node without receiving a new message
from the IM client. Fig. 7 illustrates a partial state chart of this
Menu tag evaluation process.

J' [ok event]

[Gel current values (currentOption, currentMessage,]J

<>/ [currentOption is Prompt]

[curren{Option is Menu]

mmand] -

[currentOption is Sequence]

<

[currentOption is

[condition = true]

[result = ((Menu) currenlOpt\on],ge{MenuU]

<

[is a back message?]

2 2 backinCurrentSequence := true
[condition = false]

[currentMessage matches with Menu suboption?] O
[current()phon = currentOption.parent

[curre ntOption := subOprion]

Send result as a message

(CEear current values for next currentOption and Send Ok eveni]

Clear current values for next currentOpti onJ

\

Fig. 7. ZapML interpretation process of Menu tags.

IV. RESULTS AND DISCUSSION

Interesting IM bots have been developed in recent years.
Nombot [24] is a bot that collects data about the nutrition to
simplify the food tracking. @dawebot [25] is a Telegram bot for
training students in any subject using multiple choice question
quizzes. Teleboyarin [26] is an instant messaging bot for rapid
delivery of annotation processes powered by a mechanized labor
engine over the Telegram messaging system. Tcarenko et al. [27]
presented an loT-enabled fall detection system with a messenger-
based notification method over the Telegram messaging system.
Art-bots [28] is a Messenger chatbot that interacts with visitors
through chat and convey information about the museum artifacts
in the form of short stories. Finally, for chatbot platforms, Kar
and Haldar

[29] introduced a conceptual system design which will aid
in building Chatbot systems for IoT.

As a SPLIMBo bot example, LibrasZap [30] is a quiz game
that assesses knowledge in Libras, the Brazilian sign language
used by deaf (Fig. 8). The game consists of selecting the correct
answer among available options in continuous game rounds.
Each game round provides one Libras word in a video and four

.
F

-2l

word options to be chosen by the player. If the player selects the
correct video word, the player gets one point and goes to the next
round. If the player selects a wrong word, the game ends and the
player result is compared with the best game results, allowing or

not the player to put your name in the hall of fame.

Q =

Iniciardn e

Iniclando .. °
Tente adivinhar qual ¢ a palavia no
video!
Escolha uma das opgoes abaixo: Rikladocs
1 - Pijama i
2-Fau Tente adivinhar qual & a palavia
3-Torneio ne video!
4-Quinze olh 5 .
Tentte adivishar qual & a palaviane Eascetapdealcnstes ok
video! R - Repetir Video -
Escolha uma das opgdes abaixo: ;_3;?:;0'
— 3-Idade
2-Retame I 4-Recife
3~ Jaguar - e
4 - Demoeracia - R+ Repetir Video o
R - Repetir Video a A @ & B
I i 5 d w]

Fig. 8. Telegram, WhatsApp and Messenger versions of LibrasZap
game.

<seguence keycode="I" descriptlon="Start">
<command><execrendofGame=false</exec></command>

<!-- While not end of game ——>
<sequence condition="System.end0fGame ——false">
<command>
<execr¥hit=true;;;score=0</exec>
<text>Starting ...</text>
</ command>
<!-— While responding correctly ——>
<seguence conditlion="System.correctinswer=—true">
<command>

<execrexitMenu=false;;;
SQL.CALL{prepareToPlay, , System.jidClient) ;;;
currentVideo=SQL.QUERY (select url from VideolList ...);;;:
opl=8QL.QUERY (select opl from GamePlay ...):;::
opCorreta=sQL.QUERY (select opCorrect from GamePla
</exec>
</ command>

--)

<!-— Show videc and menu with 4 options —->
<command><video>System.currentVideo</video></command>
<menu condition='System.exitMenu—false' ... >
<text>Try to guess ...</text>
<command description="System.opl" keycode="System.order">
“<sequence>
<command condition="'System.opl'=='System.opCorrect’">]
<exec>+tscore; ; ;exitMenu=true</exec>
<text>Congratulations!!</text>
</command>
<command condition="'System.opl'!='System.opCorrect”
<text>Sorry!l</text>
<exscrexitMenu=true;; ;correctBAnswer=false</exsc>
</command>
</ sequence>
</command> ...
‘ <!-— Repeat the code for sach cpticons ——>

el

<command description="Repeat Video" keycode="R">
<video>System.currentVideo</video>
</ command>
</menu>
</sequence> ...

<!'-— Verify if wants a new game play ——>

<prompt exechAfterConfirmation="newGame=System.currentMessage”>
<text>Try again (S5-Sim/N-Nfo):</text>

</prompt>

<command condition="('System.newGame'=='N")">
<execrendOfGame=true</exsc>

</command>

</aequence>
</sequence>

Fig. 9. Partial description of LibrasZap configuration.

In a ZapML perspective, Fig. 9 illustrates a partial
description of the LibrasZap configuration for game rounds.
It shows a combination of Sequence tags that prepare the next
game round for each correct answer and control the game play
asking for new attempts. Menu and Prompt tags are also applied
to perform game interactions, such as: send the video with the
Libras word to be assessed, show options to be chosen by the
player, and ask textual questions according to the game flow
(“Try again (Y/N)?”, for example).

Regarding of available bot builders, the number of tools
and services have grown significantly in recent years. In most
cases, they are proprietary solutions available in the cloud that
offer free services to build and support multi-IM bots (tables I
and II). Most of them provides a custom API to define simple
workflows for bot conversations. Some of them also provide
support for Javascript programming resources, communication

™

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V3 - N2 - 2017

SPLIMBo — Developing and Evaluating a Software Product Line for Cross-Platform IM
Bots

Victor Travassos Sarinho (p. 18 - 23)

API for external services, and bot templates to build common
bots for specific categories.

TABLE 1
BOT BUILDER CHARACTERISTICS
Project Host Sﬁp—'-_r. Wit e Bom Status
T ource Amrochere
ChatFusl [E] Cloud Ho No Actve
Parmmabotz [9] Cloud Waz Tes Actrve
Flovamen [10] Cloud Mo Tes Actre
Crupshup [11] Cloud Ne Tes Actrve
Motion a1 [31] Cloud Mo Tes Actre
MamChat [32] Clond No Mo Actrve
Saguel [33] Cloud Ne Yes Actre
Trufied [12] Wehb Mo Tes Clozad
Zhou =t al. [13] Loecal Patant Yes Crut of
Date
EPLIMEo [14] Leeal Was Yes Active
TABLE 11
BOT BUILDER CHARACTERISTICS (CONT.)
Project Cost Implamentation
ChatFual [E] Free Custom APT
Permabatz [9] Free Eezdirectar AFL
Flows=e [10] Dlonthly Javazenpt + Custom AP]
Gupshup [11] Dvlomthly Javascript + Custom APT
Motion.a [31] Frea for Hode js + Custom API
Imited bot
Mlamy Chat [32] Free Custom APT
Sequal [33 Free Bot Templates + Custom APT
Inified [12] Free HTTE/REST API
Zhou et al [13] Fatent KL
SFLINEo [14] Free ML + Custom Seript

In contrast with them, SPLIMBo presents a local and open
source solution to deploy multi-IM bots. The idea is to provide a
SPL structure that supports the fast configuration of customized
IM services for dedicated systems. As a result, simple and
advanced workflows can be developed to integrate IM bots and
platforms with desired information systems available in a local
environment. Moreover, by the possibility of extending open
source IM adapters, SPLIMBo can communicate with distinct
IM platforms, such as web services and IoT for example, in
order to send/receive desired IM content.

V. CONCLUSIONS AND FUTURE WORK

This paper presented SPLIMBo, an open source SPL for
cross-platform IM bots. For this, SPLIMBo assets based on
cross-platform IM resources were defined and integrated.
The interpretation process of received IM and the monitoring
process of IM platforms were shown and explained. Finally, the
configuration of SPLIMBo bots was described and exemplified
by DemoZap and LibrasZap bots.

In a brief comparison with related work [8-14, 31-33],
SPLIMBo presents a configurable, local hosting and open
source cross-platform SPL solution that works with current
resources of IM platforms. It describes a possible solution to
the variability problem of IM bots, allowing the configuration
of advanced TUI in a “write once run anywhere” perspective
by feature-based XML configurations. SPLIMBo also enables
the production of dynamic and interoperable bots, by the
execution of programming scripts and dedicated routines that
share database structures and ZapML configurations in local
environments.

Regarding the SPLIMBo usage perspective, there is a
“recent rise in popularity of messaging bots: chatterbot-like
agents with simple, textual interfaces that allow users to access

-

.22

information, make use of services, or provide entertainment
through online messaging platforms™ [34]. It is a consequence
of the bot interface paradigm that “makes use of context,
history, and structured conversation elements for input and
output in order to provide a conversational user experience
while overcoming the limitations of text-only interfaces” [34].
Therefore, there is a trend in the development of “Botplications”
[34] in next years, and SPLIMBo can be defined as a candidate
to support this development demand in the future.

As identified limitations, SPLIMBo does not offer dedicated
resources from specific bot platforms to provide advanced IM
interactions, such as in-line buttons and webviews [35]. For IM
adapters, the loop-driven monitoring approach improves the
server consumption of computational resources available in the
local structure, limiting the SPLIMBo scalability to offer a cloud
service for bot support. Moreover, the representation of SQL
routines in ZapML configurations opens security holes in the
current SPLIMBo version for bot configs provided by distinct
users.

As future work, new bots will be developed to improve
the validation and evolution process of SPLIMBo assets. For
game bots, an IM game engine based on SPLIMBo resources
is currently in production [36]. Finally, other IM adapters
and ZapServer optimizations will be developed to extend the
collections of communication platforms and bot interaction
possibilities, such as dedicated IM bots and SPLIMBo cloud
services for example.

REFERENCES
[1] K.ChurchandR.deOliveira,”“What’supwith WhatsApp?:comparing
mobile instant messaging behaviors with traditional SMS,” in Proc.
of the 15th ACM International Conference on Human-computer
Interaction with Mobile Devices and Services, 2013, pp. 352-361.
D. R. Vukovic and I. M. Dujlovic, “Facebook messenger
bots and their application for business,” in 24th IEEE
Telecommunications Forum (TELFOR), 2016, pp. 1-4.
J. C. Oliveira, D. H. Santos and M. P. Neto, “Chatting with
Arduino platform through Telegram Bot,” in IEEE International
Symposium on Consumer Electronics (ISCE), 2016, pp. 131-132.

2]

31

[4] Telegram Bot Platform. Telegram. [Online].
Available: https://telegram.org/blog/bot-revolution
[5] Complete list of Chat APIs. ProgrammableWeb.
[Online]. Available: http://www.programmableweb.
com/category/chat/apis?category=20107
[6] Introducing Bot API 2.0. Telegram. [Online].
Available: https://core.telegram.org/bots/2-0-intro
[71 The PHP WhatsApp library. ChatAPL [Online].
Available: https://github.com/mgp25/Chat-API
[8] The intuitive bot builder with Al navigation.
Chattuel. [Online]. Available: https://chattuel.com/
[9] Connect chatbots to apps. Permabots. [Online].
Available: http://www.permabots.com/
[10] Everything you need to build bots. Flowxo.
[Online]. Available: https:/flowxo.com/
[11] Build Bots & Messaging Services. Gupshup. [Online].
Available: https://www.gupshup.io/developer/home
[12] Imified. Imified. [Online]. Available: http://www.imified.com/
[13] N. Zhou, C. Shu and D. S. Meliksetian, “Method and system

for instant messaging Bots specification using state transition
methodology and XML,” U.S. Patent 7454469 B2, Nov. 18, 2008.
[14] A SPL Approach for Cross-Plattorm IM Bots. SPLIMBo.

[Online]. Available: https://github.com/vsarinho/SPLIMBo
[15] P. Clements and L. Northrop, Software Product
Lines: Practices and Patterns. Addison-Wesley
Professional, 2001. ISBN: 0-201-70332-7.

[16] M. Voelter and I. Groher, “Product line implementation using
aspect- oriented and model-driven software development,” in 11th
International Software ProductLine Conference, 2007, pp.233-242.

‘ﬁ\

SPLIMBo — Developing and Evaluating a Software Product Line for Cross-Platform IM

JOURNAL ON ADVANCES IN THEORETICAL AND APPLIED INFORMATICS - V3 - N2 - 2017 Bots

Victor Travassos Sarinho (p. 18 - 23)

[17] D. A. Beuche and M. A. Dalgarno, “Software
Product Line Engineering with Feature = Models,”
Methods & Tools, 14 @), pp. 9-17, 2006.

[18] Simple and flexible Facebook Graph API client written
in Java. RestFB. [Online]. Available: http:/resttb.com/

[19] Python framework for Telegram Bot APL Telepot.
[Online]. Available: https://github.com/nickoala/telepot

[20] Process = Modelling — Graph execution. JBoss
jBPM. [Online]. Available: https://docs.jboss.
org/jbpm/v3.2/userguide/html/ch09s10.html

[21] L Sommerville, Software Engineering.
Addison-Wesley, 2007. ISBN: 0321313798.

[22] K. Czarnecki and C. H. P. Kim, “Cardinality-based
feature modeling and constraints: A progress report,” in
International Workshop on Software Factories, 2005, pp. 16-20.

[23] DemoZap b o t .
DemoZap. [Online]. Available:https:/telegram.me/DemoZapBot

[24] B. Graf, M. Kriger, F. Miller, A. Ruhland and
A. Zech, “Nombot: simplify food tracking,” in
Proceedings of the 14th International Conference on
Mobile and Ubiquitous Multimedia, 2015, pp. 360-363.

[25] J. Pereira, “Leveraging chatbots to improve self-guided
learning through conversational quizzes,” Proceedings
of the Fourth International Conference on Technological
Ecosystems for Enhancing Multiculturality, ACM, 2016.

[26] D. Ustalov, “Teleboyarin---Mechanized Labor for Telegram,”
Proceedings of the AINL-ISMW FRUCT/Ed. by Sergey
Balandin, Tatiana Tyutina, Ulia Trifonova, pp. 195-197, 2015.

[27] 1. Tcarenko, T. N. Gia, A. M. Rahmani, T. Westerlund, P.
Liljeberg, and H. Tenhunen, “Energy-Efficient IoT-Enabled
Fall Detection System with Messenger-Based Notification,” In
International Conference on Wireless Mobile Communication
and Healthcare, pp. 19-26. Springer, Cham, 2016.

[28] S. Vassos, E. Malliaraki, F. Falco, J. Maggio, M.
Massimetti, M. G. Nocentini, and A. Testa, “Art-
Bots: Toward Chat-Based Conversational Experiences
in Museums,” In ICIDS, pp. 433-437. 201e.

[29] R. Kar and R. Haldar, “Applying Chatbots to the
Internet of Things: Opportunities and Architectural
Elements,” arXiv preprint arXiv:1611.03799, 2016.

[30] V. T. Sarinho, “LibrasZap-An Instant Messaging Game
for Knowledge Assessment in Brazilian Sign Language,”
Brazilian Journal of Computers in Education, 2017.

[31] Chatbots made easy. Motion.ai. [Online].
Available: https://www.motion.ai/

[32] Create a Facebook bot to engage your audience.
ManyChat. [Online]. Available: https://manychat.com/

[33] Create messenger bots with personality. Sequel.
[Online]. Available: https://www.onsequel.com/

[34] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo,
“The Rise of Bots: A Survey of Conversational Interfaces,
Patterns, and Paradigms,” In Proceedings of the 2017 Conference
on Designing Interactive Systems, pp. 555-565, ACM, 2017.

[35] M. Larionov. (2017, Feb.). Messenger Bots: Decision Trees vs
Webviews. [Online]. Available:https:/medium.com/@vernon99/
messenger-bots-decision-trees-vs- webviews-64b36eb0905e

[36] A Game Engine for Cross-Platform IM Bots. [Mgine.
[Online]. Available: https://github.com/vsarinho/IMgine

